The (un)reasonable elusiveness of dark matter

Torsten Bringmann

Dark matter all around

Galactic scales

Newton:

$$G_N m_{\odot} \frac{M(r < R)}{R^2} = m_{\odot} \frac{v^2}{R}$$

'missing' mass

- Rotation curves no longer main argument for existence of dark matter!
 - observed rotation curves rather diverse
 - other potential explanations (for this particular discrepancy)

Cosmological scales

Image credit: Jimmy Harris

homogeneity + isotropy

add tiny initial perturbations to background evolution

- Background evolution: 'Friedman equations' fix a(t)
- no difference between dark and visible matter

- Gravitational clustering (in linear regime) and collapse (non-linear)
- → Strong impact of dark matter

Cosmological scales

pedagogical DM review:

Balacs, TB, Kahlhoefer & White, 241 I.05062

Without dark matter, we would still be in the linear regime: no galaxies, stars, planets, ...!

- With dark matter
 - Need simulations for non-linear evolution
 - obtain ~perfect agreement with observations (at large scales)

From evidence to precision

- DM is a crucial ingredient of cosmological SM!
 - constant co-moving energy density
 - only gravitational interactions
 - cold + dissipation-less

 $\Omega_{
m CDM} h^2 = 0.1188 \pm 0.0010$ Ade+ [Planck Coll.], A&A '16

Percent-level measurements of a single parameter!

- Q: Can DM convert into (in)visible energy?

 Ω_{CDM} decrease of up to 10% possible during matter domination!

(model-independent; NB: much more allowed during RD)

TB, Kahlhoefer, Schmidt-Hoberg & Walia, PRD '18

- Q: Can't we explain all this also by modified gravity?
 - A: No! [though definitely yes for selected observations]

Candidates

- Existence of (particle) DM = evidence for BSM physics!
 - + rather good handle on what it is not
- Unfortunately, this still leaves quite a few options...

Black holes (I)

Wouldn't (super-)solar mass black holes be an "obvious" / "conventional" candidate?

2017, 2020]

Strongly constrained by micro-lensing and CMB!

Black holes can only be a sub-dominant DM component

overview:

Carr, Kohri, Sendouda & Yokoyama, 2002. I 2778

Black holes (II)

Primordial black holes can be much smaller

- But this would also not be "SM physics" ...!
 - $\ \ \,$ formation (+ requirement of $f_{\mathrm{PBH}} \sim 1$) requires BSM physics

The origin of dark matter

- Existence of (particle) DM = evidence for BSM physics
- Any convincing model for dark matter must include a production mechanism that can explain the observed abundance!
- Simplest generic interaction with the primordial heat bath:
 - \P [Z_2 symmetry not strictly necessary, but automatically guarantees stability of DM]

Weakly Interacting Massive Particles

- well-motivated from particle physics
 - Appear as 'by-products' in attempts to cure fine-tuning problems of Standard Model problems [SUSY, Higgs sector extensions, ...]
- thermal production in early universe:

= a 'miracle'?

WIMP DM is a predictive scenario

Same interaction can be probed today, in multiple ways:

WIMP DM is seriously pressured, but certainly not (yet) 'dead'!

Arcadi+, EPJC '18 Athron+, EPJC '21 (+ many more)

Beyond WIMPs

- Why should dark matter particles at all interact with ordinary matter?
- Very natural scenario: a secluded dark sector !
 - Only well-known & well-studied concepts familiar from standard model

- Dark matter
- Dark radiation, ...
 ('sterile neutrinos', 'dark photons', ...)

- A nightmare scenario ?
 - Zero signals in traditional dark matter experiments!

Generic dark sector models

Standard Model

e.g. $\mathcal{L}_{ ext{Higgs}}\supset \kappa |\phi|^2 |\Theta|^2$

Dark Sector

SM particles

- Dark matter, dark radiation, ...
- Even 'invisible interactions' can affect cosmological observables

imprints on inner (sub-)halo structure

imprints on power spectrum of matter density fluctuations

- 'Portal' couplings expected
 - Likely strong enough to thermalize the DS at high temperatures...
 - ho ...but no longer active at lower temperatures ightharpoonup well-defined $T_{
 m photon}
 eq T_{
 m dark}$

Freeze-out of 'hidden' dark matter

Thermal production works equally well in fully decoupled dark sector

but details need to be implemented correctly for precision treatment

Freeze-out ≠ decoupling!

Expect WIMPs (and similar DM particles) to stay much longer in kinetic than in chemical equilibrium:
Review: TB, NJP '09

- Density contrasts & cosmological structures can only grow after kinetic decoupling
 - Model-dependent smallest proto-halo mass

Self-interacting DM (SIDM)

- DM-DM scatterings Spergel & Steinhardt, PRL '99
 - often do not affect linear perturbations (number densities too small)
 - but isotropise DM distribution in inner parts of halo
 - \Rightarrow core formation once $\mathcal{O}(1)$ scatters per dynamical time

Effective Theory of Structure Formation

input:masses, spins,coupling constants

cosmological simulations

input:
consistent initial
conditions, nongravitational forces
between "particles"

astrophysical observables

input (for interpretation of data): output from simulations

- The first task can be demanding, the second in addition computationally very expensive
- But expect large degeneracies, so very inefficient...

Late kinetic decoupling

Four benchmarks examples: Vogelsberger+, MNRAS'16

Almost identical suppression of halo mass function as for WDM cosmology:

$$M_{\rm cut,kd} = 5 \cdot 10^{10} \left(\frac{T_{\rm kd}}{100 \,\text{eV}} \right)^{-3} h^{-1} M_{\odot}$$

[solid lines; NB: up to factor ~2 same as analytic estimate!]

$$M_{\rm cut,WDM} = 10^{11} \left(\frac{m_{\rm WDM}}{\rm keV}\right)^{-4} h^{-1} M_{\odot}$$

[dashed lines; would-be result from WDM free-streaming]

Full parameter scan

- Consider simple dark sector model with massive mediator
 - coupling fixed by thermal relic density

The origin of dark matter

- Any convincing model for dark matter must include a production mechanism that can explain the observed abundance!
- \bigcirc Are 2 \rightarrow 2 interactions the only option to produce the observed dark matter abundance?

A new production mechanism

Pandemic' dark matter

TB, Depta, Hufnagel, Rudermann & Schmidt-Hoberg, PRL '21 Hryczuk & Laletin, JHEP '21

$$n_\chi^2 + 3H n_\chi = n_\chi n_\psi^{
m eq} \langle \sigma v
angle$$
 [for $n_\chi \ll n_\psi^{
m eq}$]

The 'SIR' compartmental model

A Contribution to the Mathematical Theory of Epidemics.

By W. O. Kermack and A. G. McKendrick.

(Communicated by Sir Gilbert Walker, F.R.S.—Received May 13, 1927.)

- S # susceptible individuals
- $oldsymbol{I}$ # infected individuals # recovered $= \mathrm{tot} S I$
- infection rate recovery rate

$$\dot{I} = \beta SI - \gamma I$$

$$R \equiv \frac{\beta S}{\gamma} = \frac{n_{\psi}^{\text{eq}} \langle \sigma v \rangle}{3H}$$

Adding freeze-in production

Pandemic' production is a very generic mechanism for the genesis of DM!

 \mathbb{Z}

Signals?

- Necessarily model-dependent
 - Pandemic DM' describes a class of models, just like 'WIMP' does
- \bigcirc Q: Is there a generic way to get larger 'transmission' rates than conventional $2\rightarrow 2$ rates ?
- A: yes just add a dark sector mediator and mass mixing!

$$\mathcal{L}\supset -\delta m\,(ar{\psi}\chi+ar{\chi}\psi)-gar{\chi}V\chi$$
 tiny mixing angle $heta$

Sterile neutrinos

SM fermions

- A right-handed neutrino would be neutral under all SM gauge forces
- An excellent, well-motivated dark matter candidate
- Production by SM processes
 - oscillations with active neutrinos, combined with (electroweak) scatterings
 Dodelson & Widrow, PRL '94
- Unfortunately, this scenario is ruled out by observations...

Interacting sterile neutrinos

TB, Depta, Hufnagel, Kersten, Ruderman & Schmidt-Hoberg, PRD '23

ullet Let's add a scalar ϕ that only couples to the sterile neutrinos

$$\mathcal{L} \supset \frac{y}{2} \phi \bar{\nu}_s \nu_s \quad \boxed{m_\phi > 2m_s}$$

- $\mathbf{\Theta}$ Evolution afterwards: solid: benchmark point with large θ , small y

dashed: benchmark point with large θ , small θ dashed: benchmark point with small θ , large y

Thermalization in dark sector

- Exponential growth
- Reproductive freeze-in

Sterile neutrinos... revived!

TB, Depta, Hufnagel, Kersten, Ruderman & Schmidt-Hoberg, PRD '23

Observational constraints

$$\sigma_T/m_s \lesssim 1\,{
m cm}^2/{
m g}$$
 cf. Tulin & Yu, PR '18 maybe 0.1 possible... (?)

recast
$$m_{
m WDM} > 1.9 \, {
m keV}$$
 to Garzilli+, MNRAS '21 $\lambda_{
m FS} < 0.24 \, {
m Mpc}$ $r_{
m s} < 0.36 \, {
m Mpc}$

maybe $m_{\mathrm{WDM}} > 5.3\,\mathrm{keV}$ possible... (?)

New parameter space

- Bounded from above and below
- Significant parts in observational reach

Gravitational wave signals

- Many individual merger events seen by LIGO/Virgo/KAGRA
- Cosmological signals are just as exciting

Picture: D. Chamion, MPI

Stochastic GW background at nHz frequencies observed by pulsar timing arrays

Picture: NASA

The LISA mission is now fully approved, and will target mHz frequencies

→ Yet another 'dark' way of probing new physics!

Cosmological phase transitions

- GW signal requires first-order transition
 - Not in the standard model: new physics...!
 - Triggered by temperature corrections to the potential

$$V(\phi, T) = \frac{g_{m^2}}{24} (T^2 - T_0^2) \phi^2 - \frac{g_m}{12\pi} T \phi^3 + \lambda \phi^4$$

I. Matuszak, '23

- Bubbles of new vacuum phase
 - nucleate spontaneously
 - quickly expand and percolate

Need numerical simulations

- highly non-linear dynamics
- GWs produced through bubble wall collisions, sound waves and plasma turbulence

Resulting GW spectrum

- Main phenomenological parameters:
 - nucleation/percolation temperature T
- \supseteq PT strength α \supseteq Characteristic scale β (inverse time)

$$\alpha pprox rac{\Delta V}{
ho_R} \gg 1$$

$$\alpha \approx \frac{\Delta V}{\rho_R} \gg 1 \qquad \qquad \Gamma \propto e^{-\frac{S_3(T)}{T}} = e^{\beta (t - t_0)} \Longrightarrow \frac{\beta}{H} = T \frac{d}{dT} \left(\frac{S_3(T)}{T} \right) \Big|_{T = T_n}$$

A LISA miracle?

- Ordinary matter acquired mass in EW phase transition
 - aka Higgs mechanism
- What if dark matter acquired mass in dark phase transition?
 - 'dark Higgs' mechanism

- dark matter can be produced via thermal freeze-out in dark sector
- Striking correlation between GW peak frequency and DM abundance

Conclusions

Dark matter = evidence for new physics

Detection may be impossible with traditional approaches...

- ...but this is not our only chance
 - e can use the entire cosmos as laboratory to probe truly 'hidden' (and quite reasonable!) models

Global fit results

Balan, TB, Kahlhoefer, Matuszak & Tasillo, 2502. I 9478

- Loud PT on top of astrophysical SMBH merger signal
 - addresses issues with signal slope and normalization
- 100% of observed dark matter
 - ho NB: $\langle \sigma v \rangle_{\chi\chi \to \phi\phi}$ strongly suppressed by $m_{\chi} < m_{\phi}$

- Satisfies constraints from BBN, CMB, Bullet cluster, (in)direct searches
- Testable prediction

 $m_A' = 100 - 200 \,\mathrm{MeV}$ $\kappa \simeq 10^{-4}$

