

ALICE ITS3 the ultimate paper wrap pixel detector

Magnus Mager (CERN) on behalf of ALICE 11.09.2025 Göttingen

Pixel sensors

... are nowadays everywhere — mostly to capture (visible) light

Nobel Prize in Physics 2009

Willard S. Boyle and George E. Smith "for the invention of an imaging semiconductor circuit - the CCD sensor."

Cut through a modern DSLR Pixel detectors are abundant (smartphones, surveillance, etc.) though mostly for (visible) light

Pixels sensors as particle detectors

first steps in HEP

- "The silicon micropattern detector: a dream?" E.H.M Heijine, P. Jarron, A. Olsen and N. Redaelli, NIM A 273 (1988) 615
- "Development of silicon micropattern detectors" CERN RD19 collaboration, NIM A 348 (1994) 399
- ► 1995 First Hybrid Pixel detector installed in WA97 (CERN, Omega facility

E. Heijne, E. Chesi

WA97 Experiment (1995)

- 5×5 cm² area
- 7 detector planes
- ~0.5 M pixels
- Pixel size: 75 x 500 μm²
- 1 kHz trigger rate
- Omega2 chip

Monolithic CMOS pixel sensors

sensor and readout on same chip

- Nowadays the most widespread implementation of image sensors
 - main advantage: price

- Light vs charged particles:
 - both generate electron/hole pairs
 - need to increase sensitive area to 100% (no focussing lenses for charged particles)

CMOS image sensor market

- Rapid increase of sales
- ► HEP can profit from a huge commercial interest
- Our job: make these light sensors particle sensors

ALPIDE

the state of the art Monolithic Active Pixel Sensor

3cm

oroduced and tested

524 288 pixels

rameter	Req.	ALPIDE
atial resolution (µm)	≈ 5	≈ 5
Integration time (µs)	< 30	< 10
Fake-hit rate (/pixel/event)	< 10-6	<< 10-6
Detection efficiency	> 99%	>>99%
Power density (mW/cm²)	< 100	< 47
TID (krad)	> 270 (IB)	OK
NIEL (1 MeV n _{eq} / cm ²)	> 1.7x10 ¹²	OK

Monolithic Active Pixel Sensors (MAPS)

key specifications of state of the art sensors

- Thin: O(50 μm)
- Very granular: O(10-30 μm)
- Small diodes: capacitances of O(1-5 fF)
- Highly integrated: O(100) transistors/pixel

Monolithic Active Pixel Sensors (MAPS)

working principle

ALICE ITS2

the large-scale application of MAPS

- Largest application of MAPS in HEP
 - 24k **ALPIDE** chips are currently working to produce physics
- ► 10 years of R&D & C&I
 - development of the ALPIDE ASIC
 - light, carbon truss based support structures
- ► Technology used also forward (ALICE MFT) + replica of Inner Barrel for sPHENIX + ALICE FoCal + medical applications

Key performance figures

resolution, material budget

Tracking and vertexing is based on finding and extrapolation of tracks

Performance figures

- impact parameter resolution
- momentum resolution
- readout rate ("time resolution")
- tracking efficiency

Three key contributions

- material budget
- distance to interaction point
- intrinsic sensor position resolution
- (intrinsic detector efficiency)

more info: [doi:10.1016/j.nima.2018.08.078]

ALICE ITS3 TDR [CERN-LHCC-2024-003; ALICE-TDR-021]

conceptional idea

- Replacing the barrels by real half-cylinders (of bent, thin silicon)
- ► Rely on wafer-scale sensors (1 sensor per half-layer) in 65 nm technology
- ► Minimized material budget → large improvement of vertexing precision and physics yield ("ideal detector")

Projected performance boost

- ► Improvement of pointing resolution by:
 - drastic reduction of material budget $(0.3 \rightarrow 0.07\% \text{ X0/layer})$
 - being closer to the interaction point $(24 \rightarrow 19 \text{ mm})$
 - thinner and smaller beam pipe $(700 \rightarrow 500 \, \mu \text{m}; 18 \rightarrow 16 \, \text{mm})$
- Directly boosts the ALICE core physics program:
 - low momenta
 - secondary vertex reconstruction

E.g. Λ_c S/B improves by factor 10, significance by

factor 4

Flexibility of silicon

- Monolithic Active Pixel Sensors are quite flexible
- ► Bending force scales as (thickness)-3
 - large benefit from thinner sensors

Flexibility of silicon

Monolithic Active Pixel Sensors are quite flexible

► Bending force scales as (thickness)-3

- large benefit from thinner sensors

CERN

Bent MAPS

- Functional chips (ALPIDEs) are bent routinely
 - chips continue to work
 - tested at several beam campaigns

Magnus Mager (CERN) | ALICE ITS3 | Quantum25 | 11.09.2025 | 21

beam

"uITS3"

sults: solution ction efficiency

no effect of bending

Engineering Models including services

Wind tunnel

Wind tunnel

Wafer-scale sensors

concept

- ► **Previous** chip sizes are O(1-3 by 1-3 cm²)
 - dictated by mask size
 - masks are exposed once for each chip
 - chips diced out and qualified/selected
 - interconnection on circuit boards ("modules")
- Wafer-scale "chips"/sensors: stitching of exposures
 - same mask exposed in a precisely aligned fashion
 - design is made periodic (metal lines stitch together)
 - chip is a module
 - but: more sensitive to manufacturing defects (yield)

single units

10 units stitched

what we "design"

(mask)

what we want to fabricate

wafer (ø=300 mm)

top part

central part (1)

central part (2)

central part (3)

► final chip is the concatenation of all exposures

Chip development roadmap

► MLR1: first MAPS in TPSCo 65nm (2021)

- successfully qualified the 65nm process for particle detectors

► ER1: first stitched MAPS (2023)

- large design "exercise"

- "MOSS": 14 x 259 mm, 6.72 MPixel (22.5 x 22.5 and 18 x 18 μm²): conservative design, different pitches

- "MOST": 2.5 x 259 mm, 0.9 MPixel (18 x 18 μm²): more dense design

- **ER2: "MOSAIX"** (2025)
 - full-scale, fully functional prototype
 - currently in production

ER3: ITS3 sensor production (2026)

Sensor handling

- First time to handle large (26 cm-long) and thin (50 μm) chips
- Dedicated tooling needed to be developed
- Now done routinely

ER1: MOSS

stitching prototype

- ► 14 x 259 mm, 6.72 Million Pixels
- Segmented into:
 - 10 repeated sensor units (RSU)
 - top and bottom halves with different pitches (22.5 and 18µm)
 - four different sub-matrices each with different analog designs
- Each half RSU is powered and can be tested independently
 - goal: understanding of yields and possible defects
 - difficulty: large number of power domains
- Stitched "back-bone" allows to control and readout the sensor from the left short side

ER1: MOSS

understanding of yield

- Detailed understanding of yield is gained with first prototypes
- Mitigation strategy based on:
 - hardening critical circuitry
 - fine-grained isolation of eventually malfunctioning blocks

- Very encouraging results
 - extrapolated functional yield >98%

Example threshold map of 40 MPixel over 10x26 cm of silicon

ER1: MOSS

ALICE

operation in beam tests

- Prototypes work well in beam tests
- ► Operational margin (efficiency >99% and fake-hit rate <10-6) is maintained at ALICE radiation levels

the full-scale prototype

the full-scale prototype

the full-scale prototype

the full-scale prototype

architecture

- Same size and full functionality of final chip
 - "module on a chip"
 - including data/event management and high-speed links
- High-granularity power network
 - 144 units can individually be switched off in case of malfunctioning
- ► 12 different pixel/matrix variants to fine tune operational margins
 - pitch: $20.8 \times 22.8 \ \mu m^2$
- ► In production
 - submission last month
 - test systems being finalised and tested

4.5 mm

21.666 mm

1.5 mm

Summary and outlook

- CMOS Monolithic Active Pixel Sensors (MAPS) are an established technology
 - provide excellent spacial resolution at lowest material budgets
 - ALICE is currently operating 24k sensors on its inner tracking system (ITS2)
 - rapid development over last 2 decades
- ITS3 project introduced and proved feasibility of a new class of ultra-light vertex detectors
 - bent MAPS work very well
 - 65 nm process is established for HEP applications
 - Stitched (wafer-scale) design and associated yield is understood
 - Bent, large, thin sensors can be handled and mechanically integrated
 - Air cooling is proved to be sufficient
- ► ITS3 detector to be installed in the ALICE experiment in LHC Long Shutdown 3 (2027-29)
 - detailed Technical Design Report approved
 - full-scale prototype sensor "MOSAIX" is in production
- The ITS3 project-driven R&D, together with a tight link to the CERN EP strategic R&D program, paves the way for many future applications within and outside HEP

