
podio schema evolution
(or the gift that keeps on giving)



What makes schema evolution complicated in podio?

● podio is “just” the generator for datamodels
○ EDMs always start from just the YAML definition
○ Cannot simply implement the necessary operations during deserialization in C++

● The main ROOT based backend already has a schema evolution mechanism
○ Quite powerful, no need to re-invent the wheel here
○ podio now needs to be able to generate code that has schema evolution as opt-in

● Schema evolution is complicated in general
○ Parts of it can be done automatically, others require manual intervention

● The first implementation was rushed to get podio v1.0 out
○ We cut a few corners …



Goals for podio schema evolution

● Check schema changes during code generation
○ Flag everything that cannot be done automatically (by ROOT for now)

● Handle multiple old schema versions
○ Always evolve directly to the current version, no incremental evolution

● Allow for manual intervention if desired or necessary
○ E.g. non-trivial schema changes

● Users don’t see any of this



podio schema evolution (June 2025)

● Works for everything that ROOT can do automatically + a bit more
○ Adding / removing members
○ Implicit floating point conversions
○ Renaming members

● Partially tested
○ Rather convoluted test setup
○ Features that we claimed we support were no supported

■ Schema evolution mechanism does not support renaming datatype members
■ Schema evolution does not work for renamed datatypes

● Code generation should be able to handle several older schema versions not 
just one

https://github.com/AIDASoft/podio/issues/795
https://github.com/AIDASoft/podio/issues/800
https://github.com/AIDASoft/podio/issues/796
https://github.com/AIDASoft/podio/issues/796


Step 1: Refactor testing - Why?

● General approach: write data in old format and verify we can read it in new 
format

● Old test setup used an (almost) copy of the test datamodel 
○ With a few changes here and there to test schema evolution
○ The two versions have started to diverge in some details unrelated to schema changes
○ Writes one file with several (old) collections and reads them back as new collections
○ Hard to verify what is actually tested (datatype names are not related to schema changes)
○ Adding new tests really cumbersome

● A better system is necessary
○ Isolated tests for individual schema changes
○ Easy to add / define new tests (+documentation)



Step 1: Refactor testing - How?

● AIDASoft/podio#817 for all details
● Remove all old tests
● Introduce some CMake machinery

○ Compile both versions of datamodel
○ Setup appropriate test environments for 

writing and reading (isolate dictionaries 
and libraries)

● Introduce some C++ machinery
○ Easily define checks in one source file
○ Reduce boilerplate

● Compile two binaries from source 
file

○ Some pre-processor trickery driven by 
CMake

https://github.com/AIDASoft/podio/pull/817


Step 1: Refactoring tests - Results

● Overhead in code for mini test framework compensated by removal of 
datamodel duplication

○ Including ~100 lines of docstrings and documentation
● Additional tests covering RNTuple
● More maintainable and extensible for future additions to schema evolution

○ LLMs can now do it almost first try ;)



Step 2: Version the Data

● Reminder: podio approach has three layers
○ Data stored as vector<XYZData>

● Currently we store the data “unversioned”
○ Only generate the current version

● Would like to be able to read back older 
versions

○ Need the definition of older versions
○ Initially triggered by ROOT bugs:

■ Original root-forum post
■ root#19973, root#19650, root#19644

● Caveat:
○ Changing type names breaks ROOTs automatic 

schema evolution

https://root-forum.cern.ch/t/manual-schema-evolution-with-i-o-rules-and-branches-containing-vector-t/64026
https://github.com/root-project/root/issues/19773
https://github.com/root-project/root/issues/19650
https://github.com/root-project/root/pull/19644


Step 2: Version the Data

● Several approaches possible
○ Always introduce types (even if they have 

identical definitions)
○ Detect changes and only introduce new types 

when necessary
● Put old versions into a version namespace
● Keep current version outside of version 

namespace
○ Keep ROOT schema evolution working
○ SIO is not sensitive to the exact type name
○ All but the POD layer can remain unchanged
○ Keep existing datafiles readable without 

changes

AIDASoft/podio#803

https://github.com/AIDASoft/podio/pull/803


Step 3: Adapt code generation to handle multiple versions

● Sneak preview at AIDASoft/podio#828
● TL;DR: Works for schema changes that were already supported before

○ Adding / removing members, renaming members
○ Requires change of grammar of the evolution yaml files (breaking change!)

● More next week (if people are interested)

https://github.com/AIDASoft/podio/pull/828


Next step: Extend evolution grammar for manual changes

● Needs to work for ROOT IORules 
● Needs to be re-usable for other backends


