podio schema evolution
(or the gift that keeps on giving)

What makes schema evolution complicated in podio?

e podio is “just” the generator for datamodels
o EDMs always start from just the YAML definition
o Cannot simply implement the necessary operations during deserialization in C++
e The main ROOT based backend already has a schema evolution mechanism
o Quite powerful, no need to re-invent the wheel here
o podio now needs to be able to generate code that has schema evolution as opt-in
e Schema evolution is complicated in general
o Parts of it can be done automatically, others require manual intervention
e The first implementation was rushed to get podio v1.0 out
o We cut a few corners ...

Goals for podio schema evolution

e Check schema changes during code generation
o Flag everything that cannot be done automatically (by ROOT for now)

e Handle multiple old schema versions
o Always evolve directly to the current version, no incremental evolution

e Allow for manual intervention if desired or necessary
o E.g. non-trivial schema changes

e Users don't see any of this

podio schema evolution (June 2025)

e \Works for everything that ROOT can do automatically + a bit more

o Adding / removing members
o Implicit floating point conversions
o Renaming members

e Partially tested

o Rather convoluted test setup

o Features that we claimed we support were no supported
m Schema evolution mechanism does not support renaming datatype members
m Schema evolution does not work for renamed datatypes

e (Code generation should be able to handle several older schema versions not
just one

https://github.com/AIDASoft/podio/issues/795
https://github.com/AIDASoft/podio/issues/800
https://github.com/AIDASoft/podio/issues/796
https://github.com/AIDASoft/podio/issues/796

Step 1: Refactor testing - Why?

e General approach: write data in old format and verify we can read it in new
format

e Old test setup used an (almost) copy of the test datamodel

o With a few changes here and there to test schema evolution
The two versions have started to diverge in some details unrelated to schema changes
Writes one file with several (old) collections and reads them back as new collections
Hard to verify what is actually tested (datatype names are not related to schema changes)
Adding new tests really cumbersome

e A better system is necessary

o Isolated tests for individual schema changes
o Easy to add / define new tests (+documentation)

o O O O

Step 1: Refactor testing - How?

AIDASoft/podio#817 for all details
e Remove all old tests

Introduce some CMake machinery
o Compile both versions of datamodel
o Setup appropriate test environments for
writing and reading (isolate dictionaries
and libraries)
e Introduce some C++ machinery
o Easily define checks in one source file
o Reduce boilerplate
e Compile two binaries from source
file
o Some pre-processor trickery driven by
CMake

ADD_SCHEMA_EVOLUTION_TEST(components_new_member)
ADD_SCHEMA_EVOLUTION_TEST(datatypes_new_member)
ADD_SCHEMA_EVOLUTION_TEST(implicit_floating_point_change)
ADD_SCHEMA_EVOLUTION_TEST(components_rename_member WITH_EVOLUTION)
ADD_SCHEMA_EVOLUTION_TEST(datatypes_rename_member WITH_EVOLUTION)

$ 1ls datatypes_new_member/

check.cpp new.yaml old.yaml

: $ 1s components_rename_member/
check.cpp evolution.yaml new.yaml old.yaml

#include "datamodel/TestTypeCollection.h"

#tinclude "check_base.h"

int main
WRITE_AS(TestTypeCollection, {
elem.comp().f = 3.14f;
elem.energy(1.234);
1)

READ_AS(TestTypeCollection, {
ASSERT_EQUAL(elem.comp().f, 3.14f, "Implicit conversion
for component members doesn't work");
ASSERT_EQUAL(elem.energy(), 1.234f, "Implicit conversion
for datatype members doesn't work");

b

https://github.com/AIDASoft/podio/pull/817

Step 1: Refactoring tests - Results

) Conversation 13

e Overhead in code for mini test framework compensated by removal of
datamodel duplication
o Including ~100 lines of docstrings and documentation
e Additional tests covering RNTuple
e More maintainable and extensible for future additions to schema evolution
o LLMs can now do it almost first try ;)

Step 2: Version the Data

e Reminder: podio approach has three layers
o Data stored as vector<XYZData>

e Currently we store the data “unversioned”
o Only generate the current version

e \WNould like to be able to read back older

versions
o Need the definition of older versions
o Initially triggered by ROOT bugs:
m Original root-forum post
m root#19973, root#19650, root#19644

e Caveat:
o Changing type names breaks ROOTs automatic
schema evolution

il

HitCollection

.n

O

Hit

User Layer

oy
HitObject

S

Object Layer

1

HitData

)

POD Layer

https://root-forum.cern.ch/t/manual-schema-evolution-with-i-o-rules-and-branches-containing-vector-t/64026
https://github.com/root-project/root/issues/19773
https://github.com/root-project/root/issues/19650
https://github.com/root-project/root/pull/19644

Step 2: Version the Data AIDASoft/podio#803

e Several approaches possible
o Always introduce types (even if they have
identical definitions)
o Detect changes and only introduce new types // Just for future proo
When necessary '/ declare this version

e Put old versions into a version namespace

namespace datamodel {
struct XYzZData { float e; };

namespace v2 {

using XYZData = datamodel::XYZData;

e Keep current version outside of version LRI
namespace namespace vi {
struct XYzData { float e; };
o Keep ROOT schema evolution working 1 // ne A ,1

o SIO is not sensitive to the exact type name

o All but the POD layer can remain unchanged

o Keep existing datafiles readable without
changes

https://github.com/AIDASoft/podio/pull/803

Step 3: Adapt code generation to handle multiple versions

e Sneak preview at AIDASoft/podio#828

e TL;DR: Works for schema changes that were already supported before
o Adding / removing members, renaming members
o Requires change of grammar of the evolution yaml files (breaking change!)

e More next week (if people are interested)

https://github.com/AIDASoft/podio/pull/828

Next step: Extend evolution grammar for manual changes

e Needs to work for ROOT IORules
e Needs to be re-usable for other backends

