

Overview

Choice of photosensor

- Crucial properties
- Influence of sensor properties on detector behavior
- Photosensor testing facility in Munich
- SiPMs: dark count
- Alternative photosensor types

Optical Module for PMTs

- Design
- Pressure withstanding encapsulations
- Light concentrators: effective area increase

Summary + possible topics for discussion

Crucial photosensor properties

Property	Requirement	
Timing uncertainty (single photoelectrons(spe), FWHM)	<3.0ns	
Early pulses	<1%	
Late pulses	<4%	
Quantum efficiency @420nm	>21%	
Optical coverage, using 1.75x light concentrators	30%	
Dynamic range	spe→0.3pe/cm²	
Gain (PMTs)	>3·10 ⁶	
Peak-to-valley ratio (spe)	>2	
Dark count	< 15Hz/cm²	
Slow afterpulses (0.2-200μs)	<5%	
Fast afterpulses (0-200ns)	<5%	
Pressure resistance	>13bar <	
²³⁸ U content	< 3·10 ⁻⁸ g/g	
²³² Th content	< 1·10 ⁻⁸ g/g	
^{nat} K content	< 2·10 ⁻⁵ g/g	
Lifetime	>30y	

probably needs to be increased

update possible?

PXE still an option? smaller tank with larger radius?

Influence of sensor properties on detector behavior

- Determine influence through Geant4 based Monte Carlo simulations
- Position and energy resolution (Dominikus Hellgartner)
 - Timing uncertainty:
 - First simulations, still fighting some problems with small timing uncertainties
 - First impression: no big influence
 - Dark Noise:
 - No big influence for energies around 1MeV or bigger
 - For 200keV position + energy resolution ≈30% worse
- α/β -discrimination (Randolph Möllenberg)
 - Dark Noise:
 - Strong influence on efficiency
 - Late Pulses + Fast Afterpulses
 - Negligible effect
 - Winston Cones (50°opening angle)
 - Improve separation by factor two

Munich photosensor testing facility

Michael Nöbauer

Edinburgh Instruments EPL-405-mod, ps pulsed diode laser, 403nm, repetition Laser: rates 2kHz-2MHz, 48ps FWHM (@2kHz), ≈11µW average power (@2MHz)

Neutral density filters: Variable attenuation

2 focusing lenses with extremely small focal lengths (≈ 1mm) **Optics:**

> \rightarrow Expand beam radius from 100µm (w₀) to \approx 10m within 90cm, approximately Gaussian beam profile at center

→ Good homogenity of beam intensity from r=0cm to r=20cm However: incident angle ≈14° @r=20cm due to small length of dark box

Between + after lenses, each with two layers of black felt attached, **Apertures:** stretching to walls, to eliminate stray light

Up to 15" diameter / 12" with light concentrator with 2x area increase

PMT holder: PMT can be moved horizontally + vertically and rotated

Acqiris DC282, 2Ch with 4GHz sampling, 10bit

Photosensor:

FADC:

Munich photosensor testing facility

So far:

- Eliminate stray light:
 - Covered last aperture, 8" PMT + scaler
 - → No time correlated coincidences
- Intensity variations:
 - Contribution from Gaussian beam profile, smaller for high maximum incident angle
 - Contribution from obliquely incident light at maximum angle, bigger for high max. inc. angle
 - Sum minimal for $\Delta I_{Gauss} \approx 0.1\%$ and $\Delta I_{oblique} \approx 3\%$
 - Test homogenity with different lenses and varying focal lengths: ball lenses + GRIN lenses
 - Status: Have adjusted optics with 2 ball lenses (f=1.1mm), 35mm distance
 - → Currently measuring homogenity with 1" PMT

To do:

- Finish analysis software
- Improve FADC readout speed
 - → Will be treated in a Bachelor thesis by Christina Frost
- Long term: include fiber optics
 - → Laser in separate dark box, direct surface scan

Goals:

- Measure large area photosensors (with light concentrators), e.g. PMTs
 - With optics: complete area at the same time, for different incident angles
 - Without optics: can scan surface with varying incident angles

Spherical ball lens

Ball lenses

Gradient Index (GRIN) lenses

SiPMs: Dark count

- Estimation of artificial events through dark noise (very optimistic)
 - Dark noise: 100kHz/mm² @300K
 - Peltier cooler → 230K (-40°C) → goes down by ≈factor 300 (paper by Jozsef Janicsko) → 300Hz/mm²
 - 30% optical coverage, concentrators (area ×2) → ≈1500m² active surface (1 detector, 50kt)
 - Assume photo detection efficiency = $65\% \rightarrow 3\times$ better than PMTs \rightarrow need only 500m^2 for comparable photo electron yield
 - Overall dark noise rate = $500 \cdot 10^6 \text{ mm}^2 \cdot 300 \text{ Hz/mm}^2 = 1.5 \cdot 10^{11} \text{ Hz}$
 - Time window needed to look for low energy events:
 - Assumptions: want to be able to see all events in FV, no slow decay component, only sensors at same z as event detect photons → time window =mere transit time through FV

$$\Delta t = \frac{s}{v} = \frac{d_{FV}}{c} = \frac{2.11 \text{m}}{0.3 \text{ m/ns}} = 110 \text{ns} \approx 100 \text{ns}$$

- Average coincidence rate in time window of trigger = $100 \text{ns} \cdot 1.5 \cdot 10^{11} \text{ Hz} = 15000 \text{ dark noise pulses}$
- Light yield ≈ 200p.e./MeV
- Energy threshold set by dark noise = 15000 pulses/ 200 pulses/MeV = <u>75MeV</u>
- Very rough estimate !
- However: With a trigger configuration like this LENA couldn't be used for low energy physics
- → Reanalyze threshold imposed by SiPM dark count with more appropriate, particle physics like local triggers + reconstruction methods
- Worst case: dark count still too high for low E physics or α/β discrimination
 - Maybe as complimentary sensor for higher energies
 - Maybe in form of hybrid detector

Alternative photosensor types

- Crucial question: Available in high quantities in time for construction?
- Possibly available for first detector:
 - QUASAR (14.6"):
 - Layout: Photocathode → HV → scintillator crystal → small PMT;
 - Very promising sensor in most regards (tts, DN, AP, ...), are even working to further improve design with faster scintillator + fast small HQE PMT;
 - Drawbacks: currently no manufacturer, dynamic range=?
 - X-HPD (8"):
 - Layout: basically as QUASAR
 - Drawbacks: high dark rate, 100-10Hz/cm², dyn. range=?
 - HAPD (13"):
 - Layout: Photocathode → HV → APD
 - Expect commercial availability in spring 2012 (status Jan. 2011)
 - Drawbacks: dyn. range?
 - QUPID (3"):
 - Layout: same as HAPD
 - Drawbacks: small size, designed for LAr/LXe, dark count @RT =?, QE=?, dyn. range?
- Need to test samples to determine all properties

QUASAR-370

X-HPD

HAPD

Alternative photosensor types

Probably not available in time:

- Abalone (≈13"):
 - Layout: Photocathode → HV → scintillator crystal → G-APD
 - Advantages: simple, robust + cheap design
 - Status: Prototypes not yet stable under atmospheric pressure

LAPPD (scalable):

- Layout: Photocathode → 2
 microchannel plates → anode
 striplines read out at both ends
- Advantages: ps time resolution, large area, position sensitive, cheap(?)
- Status: working prototypes of MCP sheets + electronics, QE still low, no complete prototype yet

Abalone

LAPPD

Choice of photosensor: status

- At the moment PMTs favoured option: so far only photosensor which is likely to fulfill all criteria
- Promising alternatives: determine properties
- Keep an eye on new developments

Until when do we have to decide on the photosensor type?

PMT optical module: Layout

- PMT + voltage divider
 - Determine requirements → in progress
 - − Measure properties \rightarrow in progress
 - Selection of best series → to do
 - Modifications? → to do
- Mu metal
- Pressure encapsulation
- Design (include design of OM)
 - Simulations
 - Build prototype
 - Test: pressure tank, radiopurity, long term
- Light concentrator
 - Simulations
 - Build prototype
 - Test:
 - Optical properties
 - Material compatibility

→ in progress

→ in progress

→ in progress

 \rightarrow to do

 \rightarrow to do

- → iii piogies
- \rightarrow to do
- \rightarrow to do
- → in progress
- Connections to other PMTs (arrays) + rack/wall

Pressure withstanding PMT encapsulations for LENA: Why encapsulate PMTs?

- Next-generation land-based neutrino experiments like
 HyperK, LBNE or LENA use tanks with heights of 50-100m
 - → High pressure at the tank bottom
 - LENA: ≈9.8bar(LAB) + safety margin
 - → At the moment no available PMT model fulfills requirements
- a) Develop new PMTs (LBNE)
- b) House PMTs in encapsulations (LENA)
 - ♣ No restrictions on PMT model to be used
 - Cheaper?
 - Faster development
 - **★** LENA: certainly possible to fulfill requirements
 - Introduce radioactivity

How to develop an encapsulation?

Design, pressure simulations, build prototype, pressure tests

- Configuration
 - Acrylic glass transparent window
 - Stainless steel body housing, one or two parts
 - Also incorporate Mu-metal, Winston Cone and connection to other PMTs + tank
 - Not crucial for pressure simulations → at a later date
- Different encapsulation designs
 - Conical
 - Based on Borexino + Double Chooz encapsulation
 - Spherical
 - As in deep sea neutrino telescopes / IceCube
 - Elliptical
 - Cylindrical
- Create engineering drawings with CAD software:
 - SolidWorks Educational Edition Academic Year 2010-2011 SP4.0

- Configuration
 - Acrylic glass transparent window
 - Stainless steel body housing, one or two parts
 - Also incorporate Mu-metal, Winston Cone and connection to other PMTs + tank
 - Not crucial for pressure simulations → at a later date
- Different encapsulation designs
 - Conical
 - Based on Borexino + Double Chooz encapsulation
 - Spherical
 - As in deep sea neutrino telescopes / IceCube
 - Elliptical
 - Cylindrical
- Create engineering drawings with CAD software:
 - SolidWorks Educational Edition Academic Year 2010-2011 SP4.0

German Beischler

Pressure withstanding PMT encapsulations for LENA: Pressure simulations

- Simulate behaviour under pressure with a Finite Elements Analysis (FEA) simulation software
 - Engineering drawings and FEA pressure simulations were done with same software

Software: SolidWorks Educational Edition Academic Year 2010-2011 SP4.0,

Simulation Premium package

• Settings: Linear static study, 12bar pressure, node distance 3mm ± 0.15mm

Materials: High impact resistant acrylic glass,

1,4404 stainless steel X2CrNiMo17-12-2

Computer: Intel i7-2600, 8GB DDR3-RAM,

AMD Radeon HD 6450 1GB GDDR3,

Win7 Prof. 64bit

- So far designs + simulations for 5 candidate PMTs:
 - Hamamatsu: R7081 (10"), R5912 (8"), R6594 (5")
 - Electron Tubes Enterprises Ltd.: 9354 (8"), 9823 (5")

German Beischler

- Was treated in a bachelor thesis by German Beischler
 - In consultance with Harald Hess (head of workshop + SolidWorks expert of our chair)
 - Continues these studies!

Pressure simulations

Procedure:

- Import PMT contour from engineering drawing in datasheet
- Rotate to obtain model of PMT
- Construct encapsulation based on PMT dimensions and experience from design of the Borexino + Double Chooz encapsulation
- Simulate encapsulation with 12bar pressure applied
 - Apply forces → meshing → simulate to determine factor of safety
 - Vary thicknesses of acrylic glass + stainless steel to find minimum values
- Compare results for different designs regarding weight (U, Th, K impurities in materials), surface (adsorbed Rn) and construction costs

Pressure simulation results:

Hamamatsu R7081 (10")

Conical encapsulation:

Steel: 2mm thickness, 4.38kg

Acrylic glass: 4mm thickness, 0.86kg

Total surface: 0.69m²

Spherical encapsulation:

Steel: 0.5mm thickness, 4.08kg

Acrylic glass: 5mm thickness, 1.48kg

Total surface: 1.01m²

Pressure simulation results:

Hamamatsu R5912 (8")

Conical encapsulation:

Steel: 1mm thickness, 3.24kg

Acrylic glass: 3mm thickness, 0.50kg

Total surface: 0.53m²

Spherical encapsulation:

Steel: 0.5mm thickness, 4.66kg

Acrylic glass: 4mm thickness, 1.10kg

Total surface: 0.83m²

Pressure simulation results:

Hamamatsu R6594 (5")

PHOTOCATHODE

Conical encapsulation:

Steel: 1mm thickness, 2.77kg

Acrylic glass: 2mm thickness, 0.22kg

Total surface: 0.37m²

Spherical encapsulation:

Steel: 0.5mm thickness, 2.75kg

Acrylic glass: 4mm thickness, 0.94kg

Total surface: 0.78m²

Pressure simulation results:

Hamamatsu R6594 (5")

Elliptical encapsulation:

Steel: 2mm thickness, 3.06kg

Acrylic glass: 2mm thickness, 0.22kg

Total surface: 0.41m²

Cylindrical encapsulation:

Steel: 0.5mm thickness, 2.61kg

Acrylic glass: 2mm thickness, 0.22kg

Total surface: 0.46m²

Pressure simulation results: ETEL 9354 (8")

- For R5912 (8") conical encapsulation was most promising → detailed study for this type for ETEL 9354
- Minimize weight in dependance of height of conical section
 - Thickness steps reduced to 0.1mm, for most lightweight encapsulation 0.01mm
 - Weight minimal for maximum length of conical part

Height of conical section [mm]	Minimal steel mass [kg]	Minimal acrylic glass mass [kg]	Total surface [m ²]
33	3.45	0.44	0.535
54	3.20	0.43	0.534
70	3.14	0.43	0.535
130	2.94	0.43	0.549

Conical encapsulation:

Steel: 0.45mm thickness, 2.94kg

Acrylic glass: 2.40mm thickness, 0.43kg

Total surface: 0.55m²

Pressure simulation results: ETEL 9823 (5")

- Plano-concave photo cathode → try flat acrylic glass window
- Very high thickness necessary
 - → Probably less material for spherical acrylic glass window needed

Conical encapsulation:

Steel: 0.6mm thickness Acrylic glass: 17mm thickness

Pressure withstanding PMT encapsulations for LENA Pressure simulations: cross-check of results

- Reproducibility
 - Repeated same simulation several times →
 - Same results
 - However only on fast computer results varied for slow computer!
- Vary node distance from 2-11mm
 - No big change for 2mm → 3mm
 - For 11mm unphysical results
 - Where possible repeat simulation with 2mm to verify results

Factor of safety distribution: red areas are unstable (FoS <1)

Next steps:

- Further crosschecks
- More exact simulations: reduce node distance (locally or globally), use adaptive methods
- Complete design (fixture for PMT inside encapsulation, filling valve) + create complete optical module: incorporate Mu-metal, Winston Cones, connections to other PMTs + wall
- Optimize encapsulations for least weight + least production costs
- Create + simulate designs for further PMTs (R6091, 9822, R11780, D784)
- Distortion analysis
- Aging simulation
- Build prototype for PMT of choice
 - Test in pressure tank
 - Adapt design to meet requirements
 - Influence of PMT implosion on adjacent encapsulations

Simulations

Pressure encapsulations

- Are they necessary?
- New PMTs being developed for LBNE:
 - Designed for 11bar (81m tank height) + good performance, will have housing around pins (most sensitive area)
 - Hamamatsu R11780: 12"
 - Designed from scratch
 - Two independent simulations by Hamamatsu + LBNE \rightarrow fulfills pressure requirements
 - ≈100 prototypes build → sensor properties look mostly very good by now, will commence pressure tests soon
 - Did pressure tests for R7081 (10"): designed for 7bar, all survived until 10bar, some above 15bar
 - ETEL D784: 11"
 - Designed from scratch
 - Simulations → fulfills pressure requirements
 - Both manufacturers claim that designs for higher pressure should be possible, problem is not pressure but pressure + high purity water for several 10y
- LENA: Do we need pressure encapsulations: for the ID? for the OD?
 - ID (100m height): LAB $\rightarrow \approx 9.8$ bar
 - OD (100m height): water → ≈11bar + ultrapure water for 30y
 - a) Use encapsulations
 - b) Develop new PMT type which can withstand 13+bar
 - c) Decrease height
- Is it an option to incorporate the buffer into pressure encapsulation?

Light concentrators

- First simulations: Winston Cones with ≈49° opening angle
 → area increase ≈1.75x seem most promising:
 - Field of view limitted to FV → reduce ratio scattered photons/ detected photons
 - Overall increase of p.e. yield due to larger input aperture → could reduce number of PMTs needed for same p.e. yield
- However: Complete MC of detector response
 — effective
 area inrease by use of Winston Cones is much smaller than
 the mathematical one:

For 50° opening angle:

- Mathematical area increase =1.70
- Effective area increase ≈1.28

Borexino Winston Cone

Adapt PMT numbers in White Paper accordingly? Yes! But what are the correct numbers?

- Problem: effective area increase depends on length of optical module (not included in simulations yet)
- Length not yet known (can be estimated though)
- Length depends on PMT diameter
- Need to repeat simulations with varying lengths → time-consuming

Summary

- Photosensor choice:
 - Have started to determine influence of photosensor properties on detector performance with Geant4 Monte Carlo
 - Photosensor test facility in Munich can soon take measurements
 - SiPMs have too high dark count for use with standard trigger configuration → reanalyze using local triggers
 - Some other promising alternative sensors have to be tested
 - So far PMTs favoured option
- Development of PMT optical module:
 - Have completed first designs + FEA simulations of pressure encapsulations → optimize designs, cross-check simulation results
 - Light concentrators apparently have much lower effective area increase → possible reduction of PMT number smaller as expected

Possible topics for discussion

White Paper:

- Update numbers to a FV of 50kt?
- LAB as favored scintillator?
- Photosensors:
 - Increase requirements on dynamic range?
 - Already possible to update dark count requirements?
 - Eliminate SiPMs as option from White Paper / update usability?
 - Effective area increase of Winston Cones: Correct numbers of PMTs needed?

Pressure requirements:

- Use encapsulations? In ID? In OD?
 - Incorporate buffer into pressure encapsulation?
- Use LBNE PMT types → tank with decreased height + increased diameter?
- Until when has the the photosensor type to be chosen?

Assembly of a R6594 conical encapsulation

- Assembly sequence for conical encapsulation:
 - 1. Solder voltage divider circuit board to socket for PMT pins
 - 2. Insert into lower part of metal encapsultion / plastic housing
 - Infuse polyurethane → fixes VD+ socket
 - 4. Bolt down upper part of metal encapsulation + retaining ring to hold down PE
 - 5. Insert PMT into socket
 - 6. Attach acrylic glass window (using o-ring seal) + brackets connecting PMTs to modules and attaching them to the walls
 - 7. Fill up encapsulation with oil

German Beischler

Attachment to wall

