Supernova Neutrinos in LENA: SNoWGLoBES and νp Elastic Scattering

LENA Working Group Meeting

Lukas Hoppenau Group: Prof. Dr. Caren Hagner DESY Luruper Chaussee 149 22761 Hamburg

Zeuthen November 16, 2011

My Work

- Thesis for bachelor of science diploma
- Main goal: Time resolvend analysis of SN neutrino signal in LENA
 - Use and extend SNoWGLoBES
 - Include neutrino-proton elastic scattering channel

• Motivation:

- How are νp spectra shaped in LENA?
- What impact have different flux models on the νp signal in LENA?
- How is the SN neutrino signal changing in time (during burst)?
- What is the maxiumum trigger rate for SN neutrinos?

SNOwGLoBES

- Add-On for GLoBES
- Main Goal: Computing interaction rates and visible energy spectra

SNOwGLoBES: GVKM Model for Flux

SNOwGLoBES: Cross-Sections in Scintillator

SNOwGLoBES: Event Rates in 50kton Scintillator

 Interaction rates as function of neutrino energy • Interaction rates as function of visible event energy

Elastic Proton-Neutrino Scattering

- Neutral current reaction
- Second highest statistics in LENA (after IBD with pprox 10⁴ Events)
- Very sensitve to energy threshold due to small energy transfer + quenching:
 - Neutrino Energy ${\bf E}_{\nu} \rightarrow$ Proton Recoil Energy ${\bf T} \rightarrow$ Visible Energy ${\bf T'}$
- Mainly ν_{μ} , $\bar{\nu}_{\mu}$, ν_{τ} , $\bar{\nu}_{\tau}$ (ν_{x}) are contributing
 - Information on ν_x Flux
- LENA: Threshold determined by $^{14}\mathrm{C}$ Backgound \approx 200keV

Proton Recoil Spectrum

Neutrino Energy $\mathbf{E}_{\nu} \rightarrow \text{Proton Recoil Energy } \mathbf{T}$

Quenching

Proton Recoil Energy $\textbf{T} \rightarrow \text{Visible Energy } \textbf{T'}$

Quenched Recoil Spectrum

Neutrino Energy $\mathbf{E}_{\nu} \rightarrow$ Proton Recoil Energy $\mathbf{T} \rightarrow$ Visible Energy \mathbf{T}'

Detector Response

• Detector response = quenched recoil spectrum + energy resolution

Proton Recoil Spectrum - GVKM Supernova Model

Proton Recoil Spectrum – Livermore Supernova Model

Conclusion and Outlook

- Large sensitivity on mean neutrino energy
- νp -channel allows to measure ν_x Flux and Spectra
- Exact value of threshold is important for rate!

• Outlook:

- Include νp -channel in SNoWGLoBES
- Create time dependent rates and spectra in SNoWGLoBES

Thanks for your attention!