π⁺ Decay-At-Rest Beam for LENA LENA Working Group Meeting Zeuthen, 17 Nov 11 M. Wurm (UHH) ## **DAE**δALUS: Experimental Concept - resonant production of LE π^+ by ~1GeV proton synchrotrons; π^+ are stopped - Neutrinos produced in π^+ decay: no $\bar{\nu}_e$ (10-4)! $\pi^+ \to \mu^+ \nu_\mu; \quad \mu^+ \to e^+ \nu_e \bar{\nu}_\mu$ - Synchrotrons at three different baselines: 1.5km (1MW), 8km (2MW), 20km (3MW) ## Neutrino energy spectrum #### **Motivation for DAEδALUS** - lacktriangle Search for the CP-violating phase $\delta_{ extsf{CP}}$ - Complementary to Superbeam approach: - exclusively $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ - no interfering matter effects - better signal-to-background ratio - For LENA: - perfect energy range: E_v = 50 MeV #### Role of the three baselines #### Role of the three baselines - elastic ve scattering provides flux normalization for the short baseline - CC reactions on ¹²C (¹⁶O for water) from all 3 baselines are used to obtain the relative fluxes - inverse beta decay events from medium and far baseline are used for oscillation search (\overline{v}_e) appearance signal) ## Signal depending on δ_{CP} ■ 10 yrs of data taking in LBNE, $\sin^2 2\theta_{13} = 0.05$ ## Backgrounds - ve scattering: contamination of the sample with ¹²C/IBD events where 2nd signal is lost - 12C (CC): none? - Inverse beta decay: - beam-intrinsic \overline{v}_e (1/r²) - 12 C reaction with neutron knock-out - DSNB signal - influence of atmospheric NC? beam on beam off ### Time structure – "Pulsed beam " ■ Relatively long time windows → background for IBD (especially NC atmospheric events) will play a role. # DAE δ ALUS Sensitivity to θ_{13} # DAE δ ALUS Sensitivity to δ_{CP}