π⁺ Decay-At-Rest Beam for LENA

LENA Working Group Meeting Zeuthen, 17 Nov 11

M. Wurm (UHH)

DAEδALUS: Experimental Concept

- resonant production of LE π^+ by ~1GeV proton synchrotrons; π^+ are stopped
- Neutrinos produced in π^+ decay: no $\bar{\nu}_e$ (10-4)! $\pi^+ \to \mu^+ \nu_\mu; \quad \mu^+ \to e^+ \nu_e \bar{\nu}_\mu$
- Synchrotrons at three different baselines:
 1.5km (1MW), 8km (2MW), 20km (3MW)

Neutrino energy spectrum

Motivation for DAEδALUS

- lacktriangle Search for the CP-violating phase $\delta_{ extsf{CP}}$
- Complementary to Superbeam approach:
 - exclusively $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
 - no interfering matter effects
 - better signal-to-background ratio
- For LENA:
 - perfect energy range: E_v = 50 MeV

Role of the three baselines

Role of the three baselines

- elastic ve scattering provides flux normalization for the short baseline
- CC reactions on ¹²C (¹⁶O for water) from all 3
 baselines are used to obtain the relative fluxes
- inverse beta decay events from medium and far baseline are used for oscillation search (\overline{v}_e) appearance signal)

Signal depending on δ_{CP}

■ 10 yrs of data taking in LBNE, $\sin^2 2\theta_{13} = 0.05$

Backgrounds

- ve scattering: contamination of the sample with ¹²C/IBD events where 2nd signal is lost
- 12C (CC): none?
- Inverse beta decay:
 - beam-intrinsic \overline{v}_e (1/r²)
 - 12 C reaction with neutron knock-out
 - DSNB signal
 - influence of atmospheric NC?

beam on

beam off

Time structure – "Pulsed beam "

■ Relatively long time windows → background for IBD (especially NC atmospheric events) will play a role.

DAE δ ALUS Sensitivity to θ_{13}

DAE δ ALUS Sensitivity to δ_{CP}

