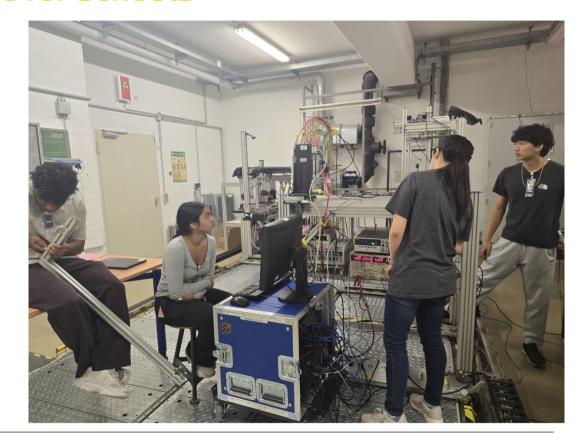


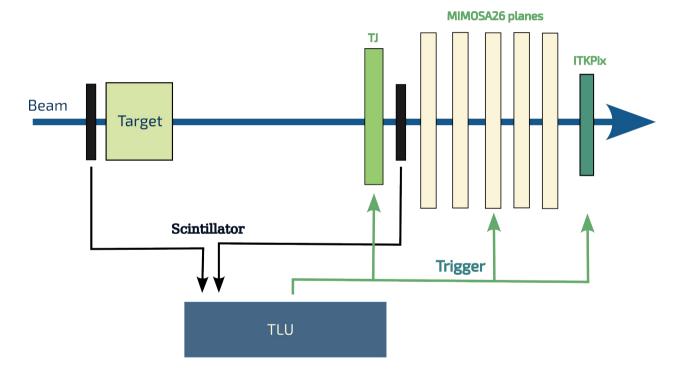
EDDA MEETING

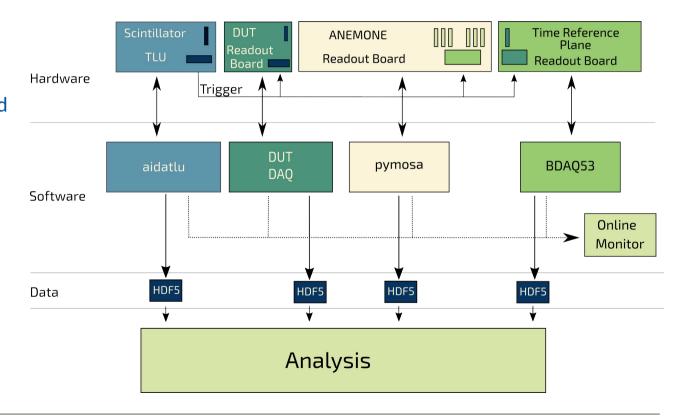
SCHOOLS AT ELSA USING CONSTELLATION

Rasmus Partzsch

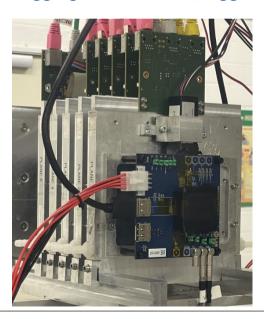


Beam Line for Schools


- Worldwide competition for students to carry out small test beam experiments
- 5 winning teams: 2 at CERN, 2 at DESY, 1 at Bonn ELSA
- 8 full days of test beam


Test Beam Setup

Readout of the Bonn Test Beam Telescope


- Modular software framework
- Each device is connected to a readout board and controlled using a Python based control software

Test Beam Setup Integration

- Pymosa (EUDET-Telescope with MMC3)
 - Start and stop of scans
 - Logging and Metrics (Trigger number)

- Bdaq (ITkPix with BDAQ53)
 - Start and stop external trigger scans
 - Basic configurations
 - Logging and Metrics (Trigger number)
- TJ (TJ-Monopix2 with BDAQ53)
 - Start and stop external trigger scans
 - Basic configurations
 - Tuning files
 - Logging and Metrics (Trigger number)
- AidaTLU (AIDA 2020 TLU)
 - Fully integrated

Configuration

- Configuration saved in TOML file format
- General configuration for all satellites
 - Max trigger number
 - Output data folder
- Satellite specific configuration
 - Activated pixels
 - Tuning files
 - Trigger configurations

```
1 [satellites]
   max triggers = 10000
    scan timeout = 0
    output folder = "/media/data/testbeam/"
    [satellites.AidaTLU]
 9 internal trigger rate = 0
10 dut interfaces = ['eudet', 'eudet', 'aida', 'off']
11 trigger threshold = [-0.1, -0.1, -0.1, -0.1, -0.1, -0.1]
   trigger inputs logic = 'CH1 and CH2'
13 trigger polarity = 'falling'
14 trigger signal stretch = [2, 2, 2, 2, 2, 2]
15 trigger signal delay = [0, 0, 0, 0, 0, 0]
16 enable clock lemo output = false
17 pmt power = [0.8, 0.8, 0.0, 0.0]
19 [satellites.Pymosa]
21 run number = "None"
22 m26 configuration file = "None"
23 m26 jtag configuration = true
24 no data timeout = 30
25 scan timeout = 0
26 enabled m26 channels = "None"
28 [satellites.Bdag]
30 start column = 0
31 stop column= 400
32 start row = 0
33 stop row = 384
35 [satellites.TJ]
36 start column = 0
37 stop column = 224
38 start row = 0
39 stop row = 512
40 tot calib file = "None"
41 chip config file = "/path/to/tuning file.h5"
```

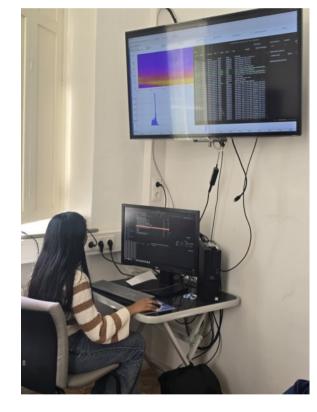

Configuration YAML

- BDAQ uses two configuration yaml, not possible to access yaml after configuration
- Testbench YAML
 - These include also a lot of unnecessary configurations (e.g. specific data formats)
 - But also output folder, chip tuning configuration...
- Bdaq53.yaml
 - Includes IP address of DAQ board
- In current implementation:
 - Testbench yaml is read in in initializing step, some parameters are overwritten by configuration TOML
 - YAML is read by DAQ during launching step

```
with open(TESTBENCH_DEFAULT_FILE, 'r') as f:
conf = yaml.full_load(f)
conf['general']['output_directory'] = configuration['output_folder']
conf['modules']['module_0']['chip_0']['chip_config_file'] = configuration['chip_config_file']
```


Data Handling

- Data is saved to common output folder
 - Each Satellite creates its own subdirectory and saves all the data to this folder
 - Data is saved with a timestamp for identification
- After some runs, data of different detectors can be collected in run folders for analysis (this is done by hand)



Conclusion

- Problems:
 - Data interpretation, satellites needed to be landed after each run (This can easily be fixed on my end).
 - Sometimes a readout board lost connection when being in launched state for too long. Running state was fine (need to investigate).
 - Formatting bug with one of the trigger number metrics of pymosa, could not reproduce this bug for now...
- Independent operation of a complete test beam setup by high school students using Constellation (v0.5.1).

