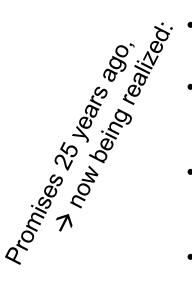
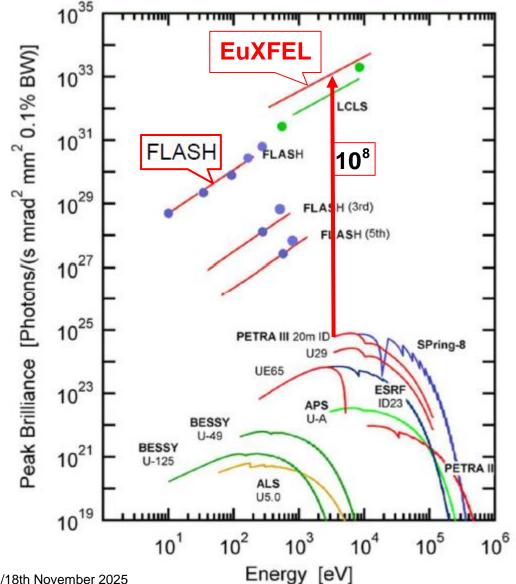


Outline of the talk


high brightness electrons sources for FLASH and European XFEL

- Why the photo injector R&D was started at DESY?
- How it was done?
- Progress on emittance reduction
- Summary of gun developments
- Photo cathode laser developments
- Photo cathode developments
- One example: application of high brightness electron sources beyond FELs

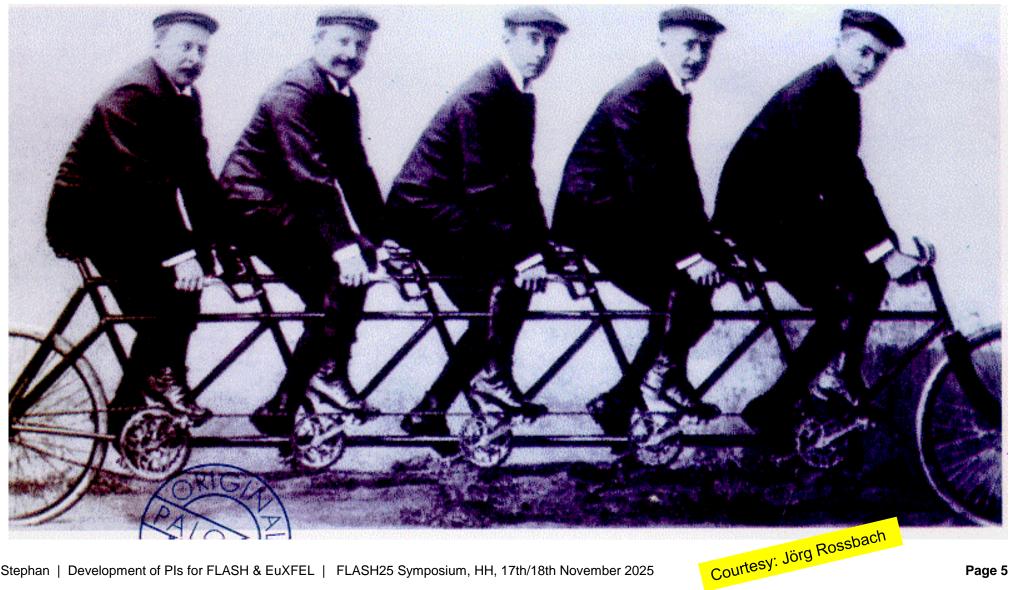
Why photo injector R&D was started at DESY?


Motivation: Why the photo injector R&D was started at DESY?

European XFEL - a next generation light source with unique capabilities

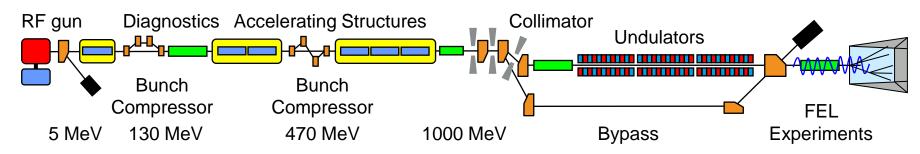
- wavelength down to 0.1 nm
 → atomic-scale resolution
- ultra-short pulses (≤ 100 fs)
 → ultra-fast dynamics,
 "molecular movies"
- ultra-high peak brilliance
 → investigations of matter under extreme conditions (Xe²¹⁺)
- transverse spatial coherence
 → imaging of single nanoscale objects, possibly down to individual macromolecules (no crystallisation needed !!)

Why brilliance is ~10E+8 higher? Synchrotrons: $P \sim N \cdot e^2$ FELs (coherence): $P \sim (N \cdot e)^2 = N^2 \cdot e^2$, $N \sim 10^8$



SASE FEL: How does it work?

Coherence is all we need !!


XFEL key component: → high brightness electron source

Why electron injector is so important ???

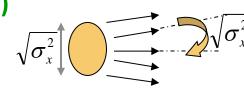
→ property of linacs: beam quality will DEGRADE during acceleration in linac

electron source has to produce lowest possible emittance!!

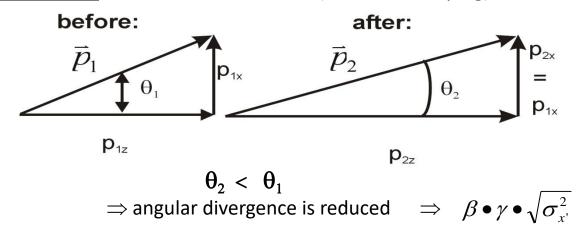
Example soft x-ray SASE-FEL: original FLASH design

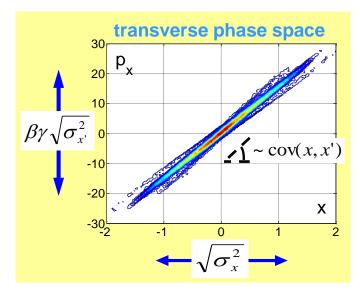
- electron source
- accelerating sections → e.g. wakefields, coupler kicks
 - in between: bunch compressor(s) → e.g. coherent synchrotron radiation (CSR)
- undulator to produce FEL radiation
- electron beam dump
- photon beamline(s) for the users

increase normalized transverse emittance



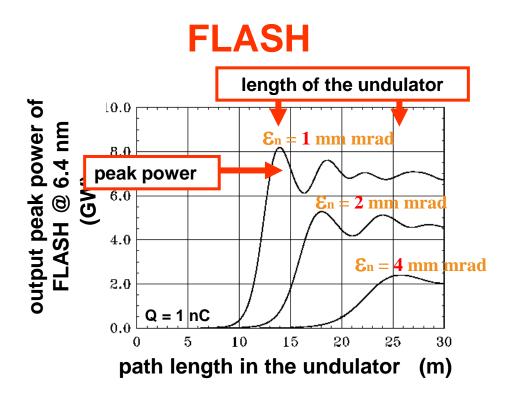
Emittance – a measure of the beam quality

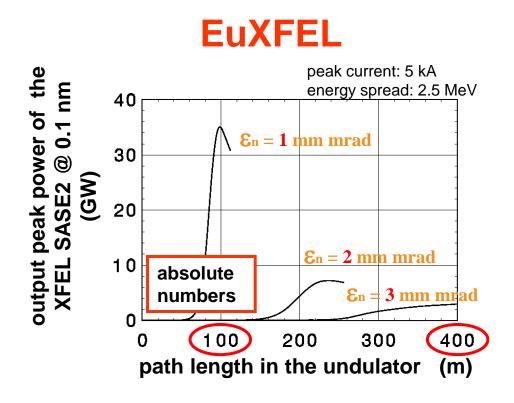

€ = 6 dimensional phase space volume occupied by given number of particles


long.: $\mathcal{E}_{z} \sim (e^{-b} \text{ bunch length}) \bullet (\text{energy spread of } e^{-b} \text{ bunch})$

trans.: $\mathcal{E}_{X,V} \sim (e^- \text{beam size}) \cdot (e^- \text{beam angular divergence})$

effect of acceleration on transverse emittance (adiabatic damping):

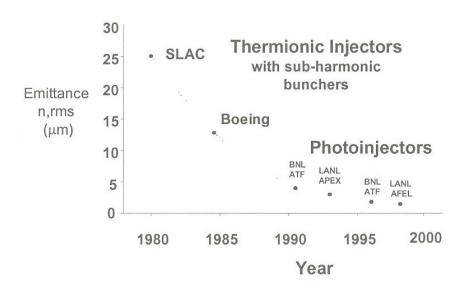

⇒ normalized RMS transverse emittance:


$$\epsilon_{x}^{n} = \beta \bullet \gamma \bullet \sqrt{\sigma_{x}^{2} \bullet \sigma_{x'}^{2} - cov^{2}(x, x')}; \quad \beta = \frac{v}{c}, \quad \gamma = \frac{1}{\sqrt{1 - \beta^{2}}}, \quad x' = \frac{dx}{ds}$$
(\varepsilon^{n} is conserved in general)

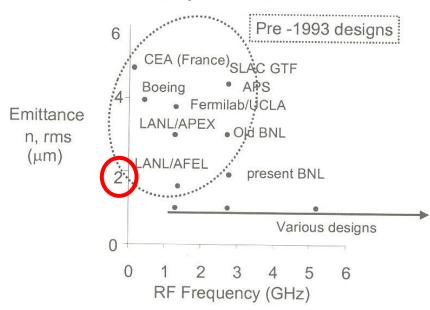
Why emittance must be small ...

smaller transverse emittance → higher X-ray power, shorter undulator needed, shorter wavelength possible

- original EuXFEL goal: 0.9 mm mrad@injector → 1.4 mm mrad@undulator
- if even smaller emittance ⇒ shorter wavelength, higher repetition rate



Situation on emittance in 1999


From ICFA workshop on high brightness beams at UCLA in autumn 1999

Summary talk of P. O'Shea (U Maryland, USA) on electron source developments:

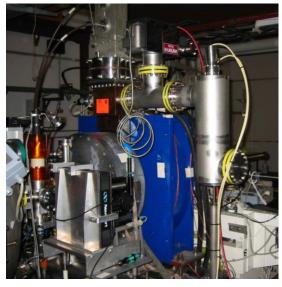
Improvement in emittance over the past twenty years (1 nC bunch, Multi-MeV energy)

Measured Emittance vs RF Frequency 1 nC per bunch

"Goal for community in next years:

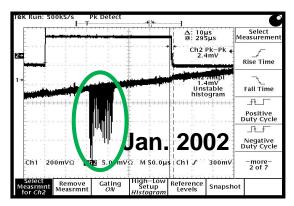
Get transverse normalized emittance of 1 mm mrad @ bunch charge of 1 nC

How photo injector R&D was done at DESY?


Electron sources for TTF/FLASH at the end of last century

Thermionic source was driving TTF, FNAL developed first PI in use at TTF, DESY development in parallel

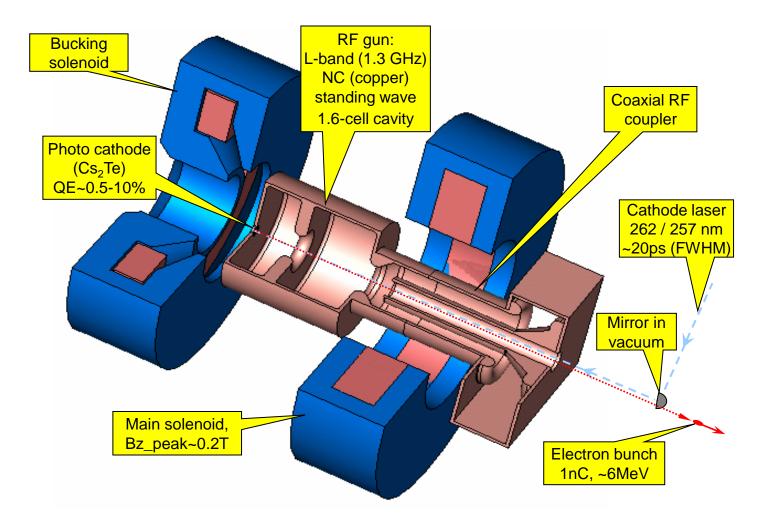
- The TESLA Test Facility (TTF) was driven by a thermionic source (250keV + SHB + scCC) from Orsay
 - (Terry Garvey et al.):
 - Goal: demonstrate **high current** transport through the super-conducting (SC) cavities which were under development
 - Parameters: 217MHz, 8mA, 800µs
- In 1998: first Photo Injector (PI), developed by FNAL (Helen Edwards et al.), was installed at TTF:
 - Goals: * test transport of high bunch charges through SC cavities (wake fields), * get first experience with PI technology: 50MV/m, ≤8nC/1MHz, 1nC/9MHz, 800µs
 - Cooperation with the Max-Born Institute (MBI) started: \rightarrow photo injector laser system
- In parallel, Klaus Flöttmann et al. @DESY developed PI with maximized symmetry (coaxial RF input coupler, no pick-up):
 - Goal: minimize beam emittance Parameters: **60MV/m**, 1nC, 9MHz, 800µs



The early history of PITZ (Photo Injector Test facility at DESY in Zeuthen)

Photo Injector Development at DESY was concentrated in Zeuthen

- Q1/1999: request to BMBF to build gun test facility independent from TTF
- September 1999: DESY directorate decision to build PITZ
- 2000: civil construction
- 2001: installation of infrastructure and first setup
- 13.1.2002: first photo electrons at PITZ
- November 2003: first characterized RF gun is sent to TTF2-FEL (FLASH)
- 2005: first operation with booster cavity (~13 MeV) at PITZ
- 2006: provide spare RF gun for FLASH



Schematic setup of RF gun at PITZ

Main properties of PITZ gun:

- 1.3 GHz cavity
- Coaxial RF coupler (flexible solenoid position)
- Capable of high average power → long electron bunch trains (SC linac, RF pulse length > 650µs)
- Very low normalized transverse emittance

PITZ Collaboration Partners

Photo Injector R&D is a team effort!

Founding partners of PITZ:

- DESY. HH & Z (leading institute)
- HZB (BESSY) (A. Jankowiak): magnets, vacuum
- MBI (S. Eisebitt): cathode laser
- <u>TU Darmstadt</u> (TEMF, T. Weiland, H. DeGersem): simulations

Other national partners:

- Hamburg university
 - most PhD students:
 - HGF-Vernetzungsfond;
 - generation of short pulses
 - plasma experiments

HZDR:

- BMBF-PC-laser-project between MBI, DESY and HZDR, until ~2009;
- collaboration between HZB, HZDR, MBI and DESY in SC-gun-cluster

+ many new partners in FLASH RT,

e.g. Uni Geneva, MDC, Charité, Uni Potsdam, MHB, DKFZ, ...

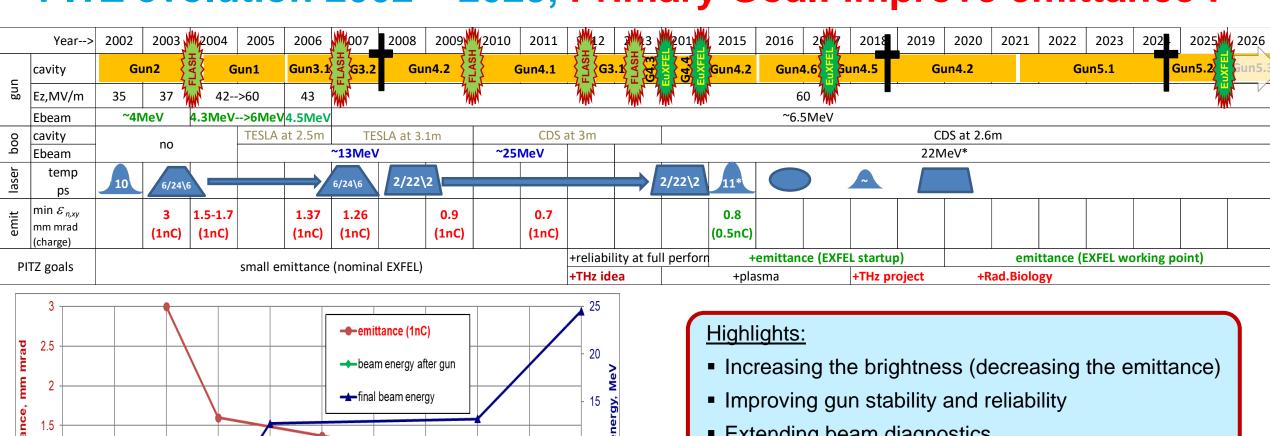
TH Wildau

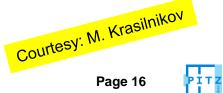
- radiation biology and FLASH radiation therapy

International partners:

- European XFEL GmbH (Th. Feurer, Th. Tschentscher): THz@PITZ
- IAP Nizhny Novgorod + JINR Dubna: 3D elliptical laser pulses, THz radiation
 INFN Frascati + Uni Roma II (M. Ferrario, L. Palumbo): E-meter / TDS pre-studies

- INFN Milano (C. Pagani, D.Sertore): photocathodes
- INR Troitsk (L. Kravchuk): CDS, TDS, Gun5
- INRNE Sofia (D. Tonev): EMSY + personnel
- IJCLab Orsav (W. Kaabi): HEDA1 + HEDA2
- <u>UKRI Daresbury</u> (D. Angal-Kalinin, B. Militsyn): phase space tomography
- Thailand Center of Excellence in Physics
 (Duangmanee Wongratanaphisan, S. Rimjaem): personnel
- AANL (YERPHI) (G. Karyan) + CANDLE (B. Grigoryan),
 Yerevan: personnel
- LBNL Berkeley (F. Sannibale): PWFA, NC CW Gun
- SLAC (N. Holtkamp): LCLS-I undulators




Progress on emittance reduction

PITZ evolution 2002 – 2025, Primary Goal: improve emittance!

- Extending beam diagnostics
- Application of high brightness beams: e.g. PWFA, THz, radiation biology

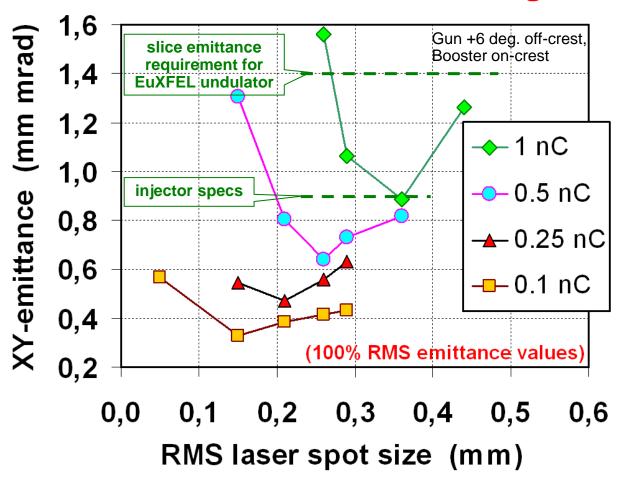
"we measure more and more of less and less..."

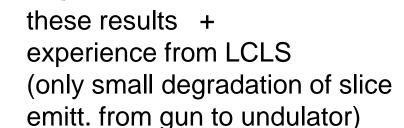
2007

2008

2009

FEL photo injector specs

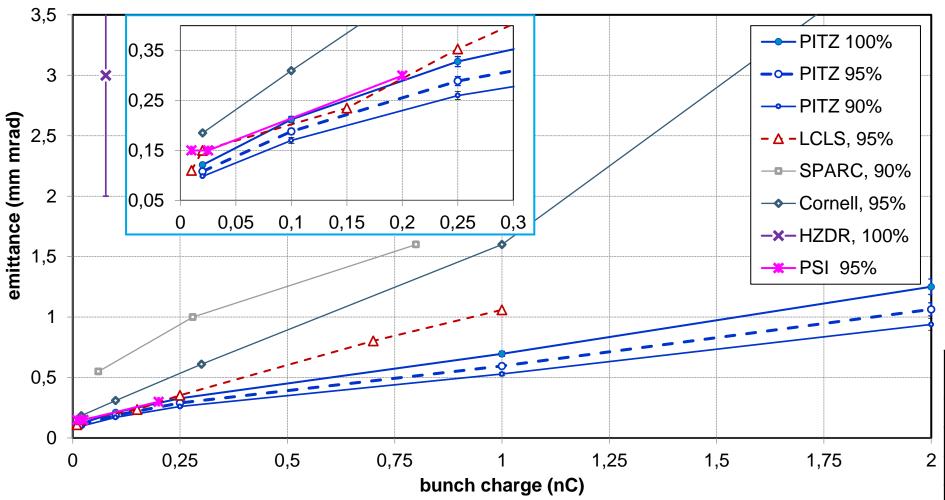

2005


Year

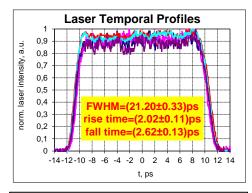
Emittance results from 2009

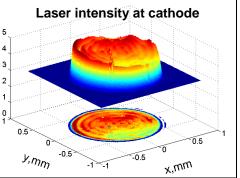
see e.g. S. Rimjaem et al., NIM A 671 (2012) 62-75

Normalized projected emittance vs. laser spot size@cathode for different bunch charges


→ EuXFEL could be operated with 14 GeV beam energy (possibility to save ~33M€)

My point of view: it was a wise decision to still build EuXFEL with 17.5 GeV to use the energy headspace for future upgrades →CW


Measured RMS normalized emittance values


→ PITZ world record on projected emittance from 2011 still valid

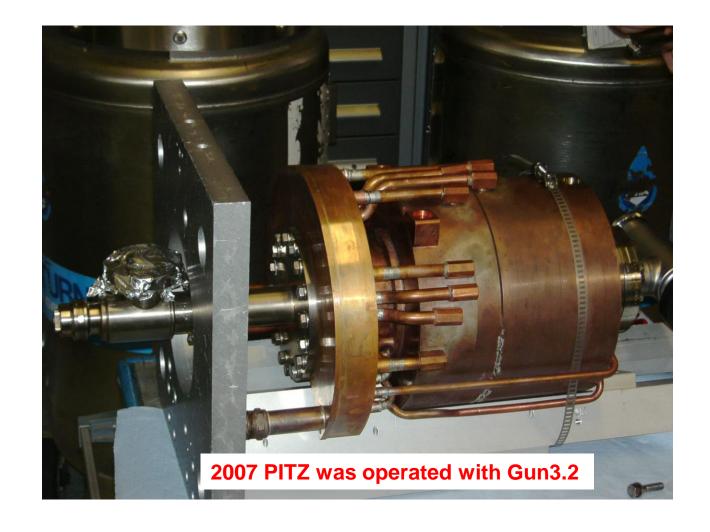
see M. Krasilnikov et al., PRST-AB 15, 100701 (2012)

Photocathode laser

Minimum emittance measured at PITZ $(\sqrt{\varepsilon_{n,x}\varepsilon_{n,y}}, 100\%)$

Charge (nC)	Emittance (mm mrad) with stat. error	
2	1.25±0.06	
1	0.70±0.02	
0.25	0.33±0.01	
0.1	0.21±0.01	
0.02	0.121±0.001	

DESY.

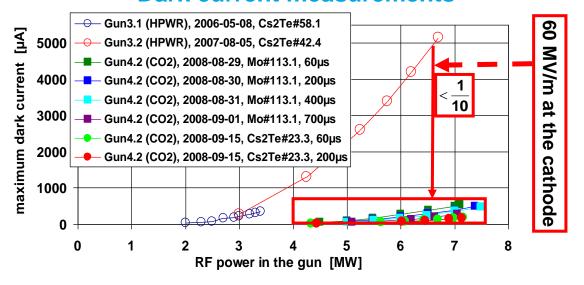

Summary of gun developments

RF gun cavity developments

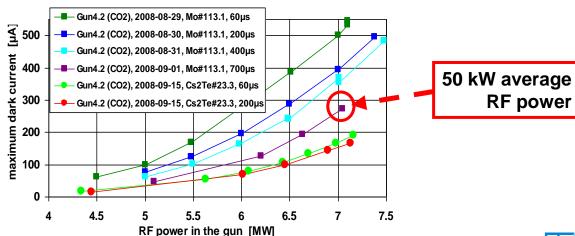
Modifications:

- Cooling water distribution
- Alignment capabilities
- Inner cell dimension "tuning"

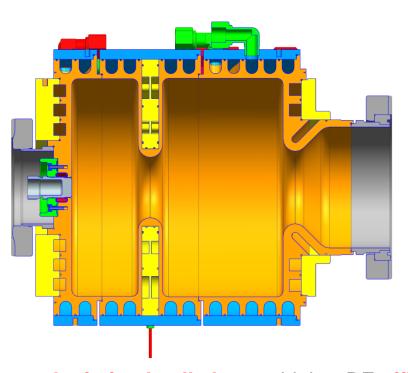
Reduction of dark current for high average power operation


2008: Dry-ice sublimation-impulse cleaning allows reduction of dark current by factor 10 (!)

Vertical cleaning setup with 110° rotating nozzle.



Dark current measurements


zoom:

Differences between Gun4 series and new Gun5 (= latest design)

Gun4 Gun5

Gun4

Gun5

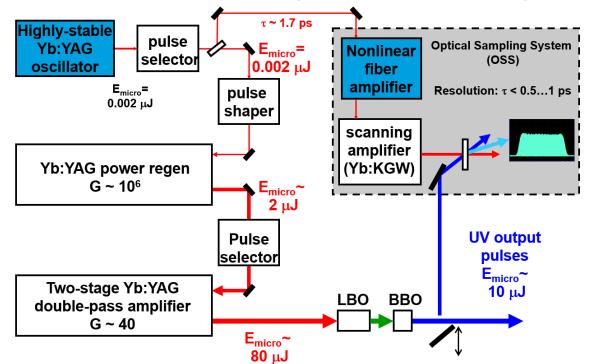
min Electric field distribution for Gun4 and Gun5

- Optimised cell shape: higher RF efficiency,
 - reduced peak **surface field** at same cathode gradient
- Direct field measurements inside the Gun: → RF probe
- Higher cooling efficiency (Gun 5: >60 kW average RF power, 1 ms @ 10 Hz)
- New cathode contact spring design

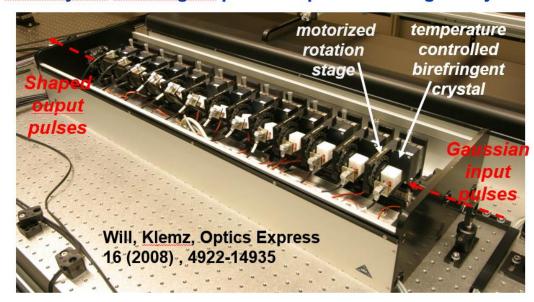
[1] V. Paramonov, Yu. Kalinin, M. Krasilnikov, T. Scholz, F. Stephan, K. Floettmann. RF Gun Development with Improved Parameters. Linac 2008, p. 627, 2008

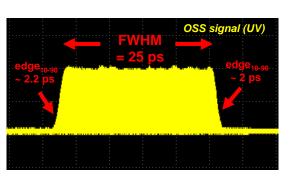
[2] V. Paramonov, N. Brusova, I. Rybakov, A. Skasyrskaya. Physical specifications of the Gun 5 RF cavity for X-FEL requirements, 2016

Photo cathode laser developments

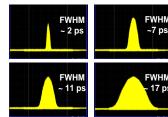

Photo cathode laser developments

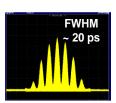
A key component for the success of PITZ or any photo injector


Max Born Institute, Berlin


- development at MBI started 1998/99
- many intermediate steps realized + tested at PITZ
- MBI also provided other photo cathode laser systems for FLASH, EuXFEL, ELBE, HZB

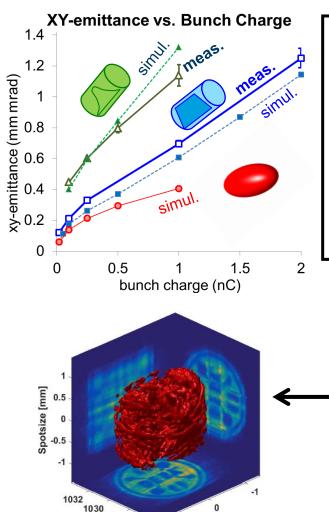
@PITZ: Yb:YAG laser with integrated optical sampling system




Multicrystal birefringent pulse shaper containing 13 crystals

Gaussian:

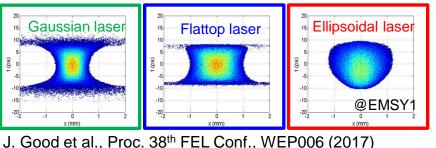
> very high flexibility



Page 24

Towards 3D ellipsoidal electron bunches with IAP (Nizhny Novgorod)

Aiming for better transverse emittance, less halo, better LPS for bunch compresison



Wavelength [nm]

Spotsize [mm]

Comparison with simulated e beam shapes (500pC):

similarity in shape @PST.Scr1 First Measurement

Redesign to true double SLM setup based on commercial PHAROS laser:

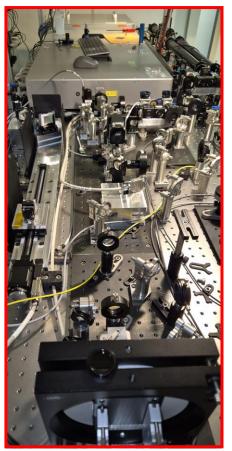
- Improved stability
- Improved shaping capabilities: independent masking in x and y, spectrograph feedback
- Conversion from IR to UV dilutes beam quality
 - now: shape at green wavelength

flexible laser shaping, backup for work horse system!

Pharos laser

Spectrograph

Latest development: NEPAL systems from DESY's FS-LA group


Modern development, high stability and flexibility, unifying photo cathode lasers at DESY

FLASH

EuXFEL

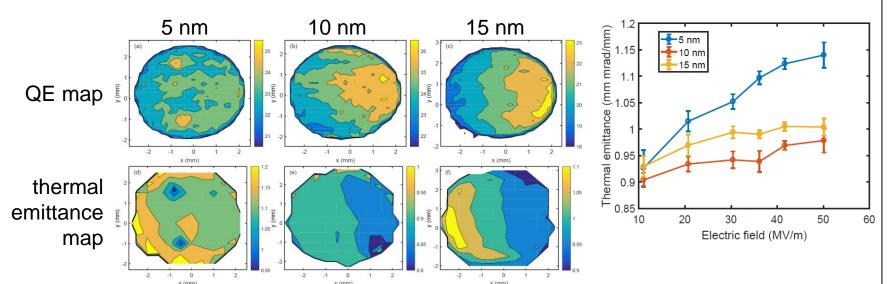
PITZ

Parameter	NEPAL-F	NEPAL-XD/X	NEPAL-P
Burst structure	burst length: 1 ms two segments with 50-70 µs gap, each segment has different pulse parameters	burst length: 1 ms two segments with 50-70 µs gap, each segment has different pulse parameters	burst length: 1 ms
Intra-burst repetition rate	40 kHz, 50 kHz, 100 kHz, 125kHz, 200kHz, 250 kHz, 500 kHz, 1 MHz	100 kHz, 254 kHz, 564 kHz, 1.125 MHz, 2.25 MHz , 4.5 MHz	40 kHz, 50 kHz, 100 kHz, 125kHz, 200kHz, 250 kHz, 500 kHz, 1 MHz 4.5 MHz
Wavelength	257 nm	257 nm	257 nm
Pulse energy for long pulse	10 μJ	5 μJ	10 μJ (1 MHz), 5 μJ (4.5 MHz)
Longitudinal pulse shape, long pulse	Gaussian, up to 14 ps FWHM Option for 20 ps flat-top with 1ps from 10-90% rising edges	Gaussian, up to 14 ps FWHM Option for 20 ps flat-top with 1ps from 10-90% rising edges	Gaussian, up to 14 ps FWHM Option for 20 ps flat-top with 1ps from 10-90% rising edges
Pulse energy for short pulse	5 μJ		5 μJ (1 MHz and 4.5 MHz)
Longitudinal pulse shape, short pulse	Gaussian, < 1 ps FWHM		Gaussian, < 1 ps FWHM
Pulse-to-pulse energy stability	< 1% rms at cathode	< 1% rms at cathode	< 1% rms at cathode

2023: NEPAL-P replaced MBI laser as work horse at PITZ

Courtesy: Lutz Winkelmann, Ingmar Hartel Page 26

Photo cathode developments


Photo cathode developments

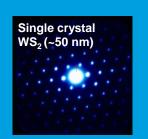
Mainly UV cathodes (Cs2Te) were used at PITZ, INFN LASA Milano also develops green cathodes

Cs2Te:

- Developments for DESY machines for were done by INFN LASA Milano
- Standard production for DESY (EuXFEL, FLASH, PITZ) was taken over by DESY Hamburg, special cathodes are still developed by LASA
- Example: Cs2Te cathodes with different **Te thicknesses**:

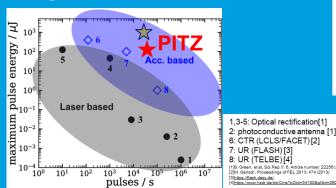
→ Anti-correlation between QE and thermal emittance observed

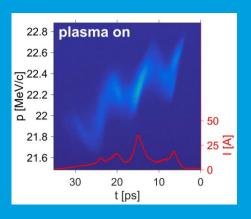
→ PRAB **25**, 053401 (2022)

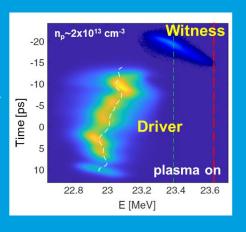

Green cathodes:

- Emission at green photo cathode (PC) laser wavelength
- Goals:
- Lower thermal emittance
- **Quick response time**
- Simplified PC laser system → no UV conversion → simplified laser shaping, less laser power
- Requirements:
 - Low dark current,
 - Long life time
 - High robustness
- First tests at PITZ done. developments continues ...

Applications of high brightness electron sources:

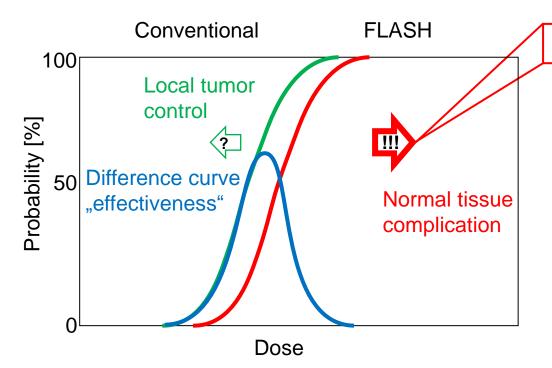

Ultrafast electron diffraction




Beam driven plasma acceleration: self-modulation & high transformer ratio

Highest power, tuneable THz source

FLASH radiation therapy and radiation biology


One application of high brightness electron sources beyond FELs:

FLASH radiation therapy and radiation biology

FLASH radiation therapy (FLASH RT) for cancer treatment

FLASH effect is an experimental observation (Favaudon, 2014), underlying mechanism still under study

- Medical/biological definition of the FLASH effect (in vivo):
 - Sparing of healthy tissue by radiation with short, high intensity pulses (e-, p, x-ray, ion) while having at least the same tumor control as with conventional radiation

Based on sketch from M.R. Ashraf et al., Frontiers in Physics, 2020, doi: 10.3389/fphy.2020.00328

→ Opening therapeutic window

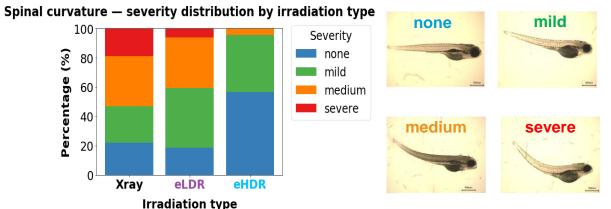
→ Treating radiation resistant cancer

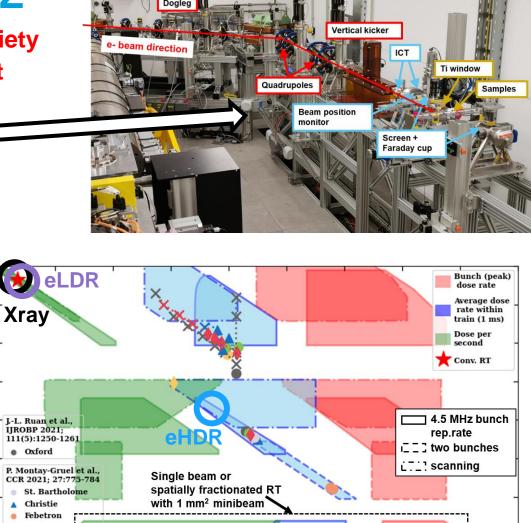
Key Questions:

- How does the FLASH effect work?
- How to optimize it for the benefit of cancer patients?

Mini-pig:

Fairly new activity: → FLASHlale@PITZ


Use existing accelerator and know how for high impact in society → advance cancer treatment


Biolab + dedicated beamline was put into operation

PITZ can provide a worldwide uniquely wide parameter range to systematically study and optimize the FLASH effect for the benefit of cancer patients

Besides many in vitro experiments also first successful *in vivo* experiments with zebrafish embryos

→ sparing of healthy tissue demonstrated!

 10^{-1}

 10^{-3}

Stanford

 10^{2}

eeded

 10^{14}

10¹⁰

dose rate [Gy/s]

Conclusion

In a strong collaboration MUCH can be achieved.

