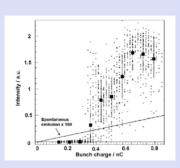


Thomas Tschentscher European XFEL

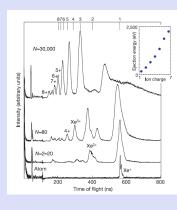
25 years FLASH workshop, November 17 & 18, 2025 thomas.tschentscher@xfel.eu


European XFEL & FLASH – a common history and time line

Direct & scientific input from FLASH to European XFEL

First lasing of a SASE FEL

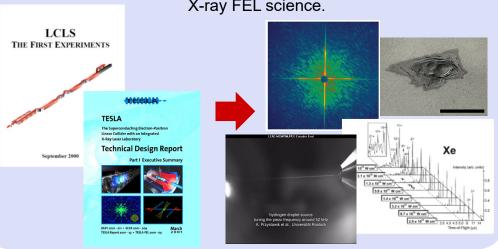
was an immense backing of the proposal to construct a hard X-ray FEL facility based on this principle.



J. Andruszkow et al., PRL <u>85</u>, 3825 (2000)

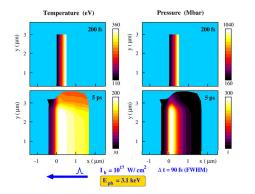
European XFEL

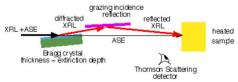
First short-wavelength FEL science results


were an important input to the decision process for an X-ray FEL facility.

H. Wabnitz et al., Nature <u>420</u>, 482 (2002)

FLASH scientific applications

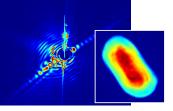

- allowed to sharpen the science case beyond the TESLA XFEL TDR and LCLS First Experiments reports,
 - · impacted enormously the LCLS science portfolio, and
- strengthend the German User community to take leading role in X-ray FEL science.


Credits: H. Chapman et al., A .Sorokin et al., A .Przystawik et al., Juha/Sobierajski et al.

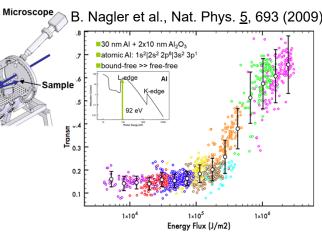
Science exchange between European XFEL and FLASH

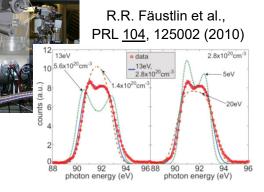
The example of High Energy Density science

TESLA XFEL TDR (2001)

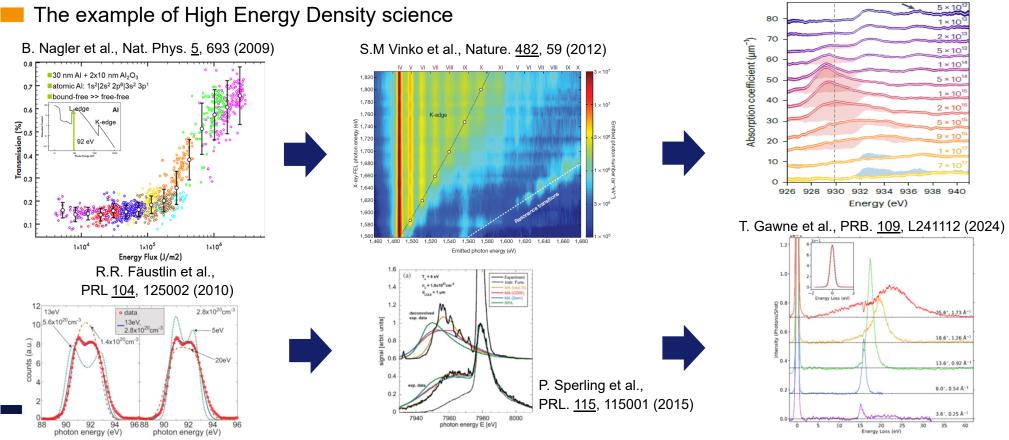

LCLS – The First Experiments (2000)

European XFEL


Peal Brightness Experiments collaboration A. Nelson, S. Bajt, Proposal of 12 (sub-)Experiments (2002) S. Toleikis et al.

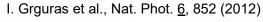

Experiment	Brief Description
Warm Dense Matter Creation	Using the FEL to uniformly warm solid density samples
EOS Measurements	Use an optical laser to heat a sample and the FEL to provide a diagnostic of the bulk
Ablation Studies	Probe the nature of the ablation process on the sub-ps time scale
Near Edge Absorption	Use visible laser to heat a solid and FEL to probe the structural changes that occur
Trapped, High ↑ Plasmas	Use EBIT / laser-cooled trap, probe highly-charged strongly-coupled "plasmas"
Diagnostic Development	Develop the FEL for Thomson scattering, interferometry, and radiographic imaging
Plasma Physics Studies	Create exotic, long-lived highly perturbed electron distribution in dense plasmas
FEL / Solid Interactions	Use the FEL to create extreme states of matter at high temperature and density
Plasma Spectroscopy	Use the FEL to pump bound state populations and study radiation redistribution
Coulomb Explosion	Study the Coulomb Explosion process with emphasis on biological imaging
Diffraction Imaging Studies	Validate imaging techniques. Perform microscopy beyond the current resolution
Optics Damage	Study structural change and disintegration process in solids under FEL irradiation

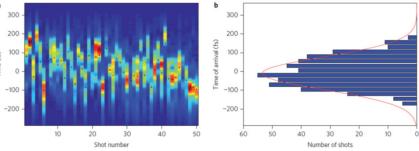
R.W. Lee, D. Riley, + 51 co-authors (..., J. Hajdu, Chapman, L. Juha, <u>T. Möller, ...S. Düsterer</u>, S. Toleikis, TT,


J. Hajdu, H. Chapman, F. Maia, et al. ML mirror

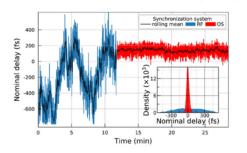
L. Mercadier et al., Nat. Phys. 20, 1564 (2024)

Science exchange between European XFEL and FLASH


Technology development – benefits to both facilities

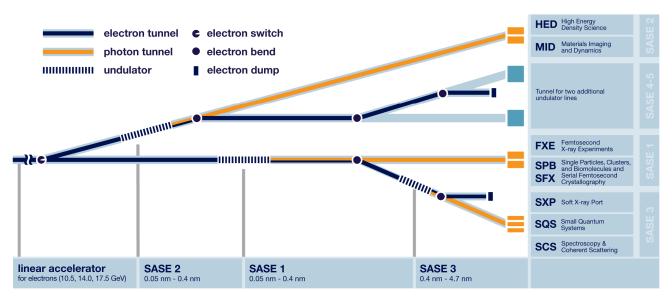

FLASH as prototype

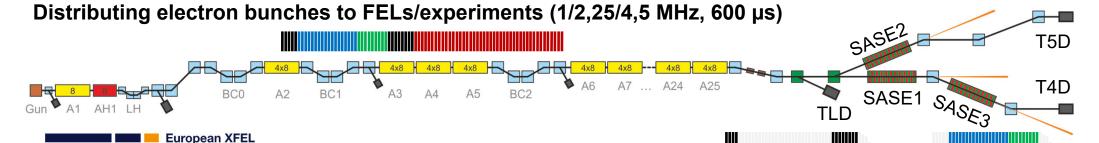
From FLASH to European XFEL


- Superconducting accelerator technology
- Controls (hw & sw)
- Prototyping & costing
- Construction & installation
- Operation of a FEL User facility
- Further development
 - Synchronization & pulse arrival measurement
 - Photo-injector & gun laser
 - Photo-electron spectroscopy

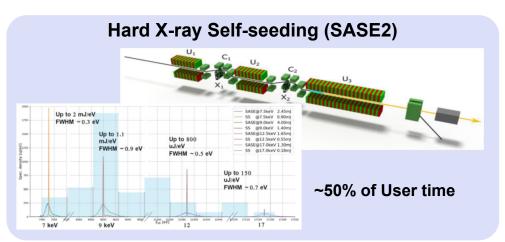
T. Sato et al., Optica. <u>7</u>, 716 (2020)

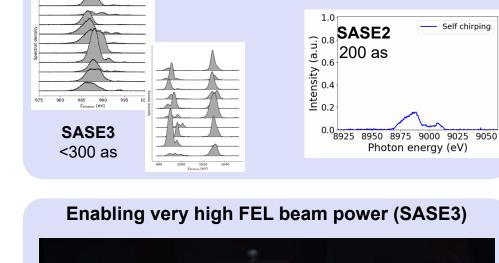
European XFEL

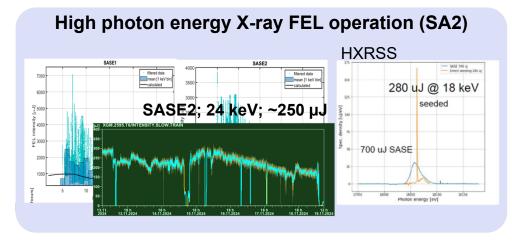

Different wavelength – many common facility aspects

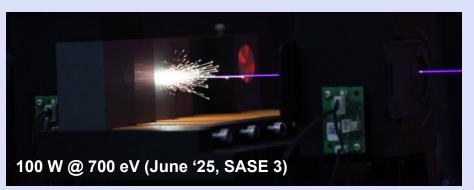


From FLASH to European XFEL

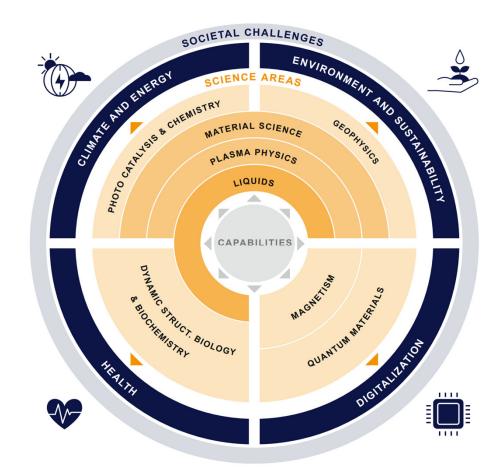

European XFEL as a Multi-user facility






Going beyond standard operation

Attosecond pulse delivery (SASE3 & SASE2)


Hoang Nat. Comm.

Makarov Nat. Comm.

Jahnke Nat. Comm.

European XFEL contributing to societal challenges

- Major impact to:
 - **Climate & Energy**
 - ► Photo-chemistry
 - ▶ Materials
 - **Environment & Sustainability**
 - ▶ Materials
 - ▶ Geophysics
 - Health
 - ➤ Structural biology
 - **▶** Biochemistry
 - Digitalization
 - ► Complex materials
 - ▶ Quantum materials
- Largely through basic research efforts

To many more years of fantastic collaboration, 'little sister'!

Thank you for your attention