RooStats Exercises

Getting Started

all RooStats classes are in a namespace
 recommended to add at beginning of macro:
 using namespace RooStats

This will also load automatically the RooStats library

- note that RooStats methods start with upper case letter while RooFit start with lower case
- RooStats calculator are quite verbose, useful to suppress many info messages"

RooMsgService::instance().setGlobalKillBelow(RooFit::WARNING);

Roostats reference guide: http://root.cern.ch/root/htmldoc/ROOSTATS_Index.html RooStats tutorial macros: http://root.cern.ch/root/html/tutorials/roostats

RooStats Exercises (1)

Service 1

- Start familiarize with creating models and workspaces
 - make workspace with a Gaussian model
 - generate 100 events random data set
 - import data set in workspace
 - oreate ModelConfig class (→ slide 11)
 - Import ModelConfig in workspace
 - save workspace in a file

RooStats Exercises (2)

Service 2:

- Run Profile Likelihood Calculator reading workspace from the file
 - ⊘ create class passing data, ModelConfig and parameter of interest
 (→ slide 14)
 - compute the 68% CL interval (using GetInterval)
 - Iook at upper/lower limit
 - plot the interval using the LikelihoodIntervalPlot class
 - suggestion: can customize plot range using plot.SetRange(xmin,xmax)

RooStats Exercises (3)

Service 3:

- make now a Poisson model (counting experiment)
 Poisson (nobs | mu);
- do as in Exercise 1 and save the workspace in a ROOT file
 - NB: make dataset with only one event.
 - Suggestion: do not use RooAbsPdf::generate but just add one event in data set
 - create RooDataSet using the constructor
 - set nobs value (w.var("nobs")->setVal(3))
 - use nobs = 3 since we can compare results

o use RooDataSet::add

Run ProfileLikelihood calculator and obtain a 68% interval result

RooStats Exercises (4)

Service 4:

- Run the BayesianCalculator on the simple
 Poisson model (nobs = 3) (-> slide 16)
- Create a uniform prior which needs to be added in the model
- Compute the 68% central and shortest interval and 95% upper limit

compare results with Cousins paper

use 1/s or 1/sqrt(s) prior on the signal and compute again lower/limit

ø plot also result

suggestion: use a non-zero value for the minimum range of the parameter (w.var("s")->setMin(1.E-6);

Solutions

Make Gaussian model: GaussianModel.C
Make Poisson model: PoissonModel.C
Likelihood interval: LikelihoodIntervalDemo.C
Bayesian interval: BayesianNumericalDemo.C
Poisson model results for nobs = 3 (no background)

Table I. 68% C.L. confidence intervals (μ_1, μ_2) for the mean of a Poisson distribution, based on the single observation $n_0=3$, calculated by various methods.

Method	Prior	Defining equation(s)	Interval	Length	Coverage?
Root-mean-square deviation		$n_0 \pm \sqrt{n_0}$	(1.27, 4.73)	3.46	no
Classical central	•••	Eqs. (6) and (7)	(1.37, 5.92)	4.55	yes
Classical shortest		Method of Crow and Gardner ^a	(1.29, 5.25)	3.96	yes
Likelihood ratio	•••	Eq. (9)	(1.58, 5.08)	3.50	no
Bayesian central	1	Eqs. (16) and (17)	(2.09, 5.92)	3.83	no
Bayesian shortest	1	Eq. (16); minimum $\mu_2 - \mu_1$	(1.55, 5.15)	3.60	no
Bayesian equal \pm	1	Eq. (16); $\hat{\mu} - \mu_1 = \mu_2 - \hat{\mu}$	(1.15, 4.85)	3.70	no
Bayesian central	$1/\mu_t$	Eqs. (16) and (17)	(1.37, 4.64)	3.27	no
Bayesian shortest	$1/\mu_t$	Eq. (16); minimum $\mu_2 - \mu_1$	(0.86, 3.85)	2.99	no
Bayesian equal \pm	$1/\mu_t$	Eq. (16); $\hat{\mu} - \mu_1 = \mu_2 - \hat{\mu}$	(1.36, 4.63)	3.27	no

^aReference 31.

tron

Why isn't every physicist a Bayesian?

Robert D. Cousins Department of Physics, University of California, Los Angeles, California 90024-1547

RooStats Exercises (5)

Service 5:

Add to the Poisson model a background with a Gaussian constraint
Poisson(nobs | s + b) Gauss(b | b₀, sigma_b)
optional: try to use also a Gamma constraint
obtain 68% interval (or 95% limit) for ProfileLikelihood and BayesianCalculator with a uniform prior

use also Bayesian MCMC calculator to get interval
 optional: add also systematics (additional nuisance parameter) in the signal rate (efficiency)

Exercise 6

Service 6:

 Use exponential falling background model plus a gaussian peak made for previous RooFit exercise

- Obtain interval or limit using the Bayesian MCMCalculator on number of signal events (-> slide 90)
- Let the mass also vary in the model
 make the 68% contour of Ns vs mass using MCMC
 - succession use also Profile likelihood calculator and
 - obtain contour
 - compare the two obtained results

Solutions (2)

- Make Poisson with background model: PoissonModelWithBackg.C
- ø intervals :
 - ProfileLikelihoodDemo.C
 BayesianNumericalDemo.C
 BayesianMCMCDemo.C
 - these are similar to RooStats tutorials
 - StandardXXDemo.C (e.g. StandardProfileLikelihoodDemo.C)
 - in this case one needs to give also workspace, ModelConfig and data set name
- Signal plus exponential background model:
 SPlusBExpoModel.C
 - run MCMC using BayesianMCMCDemo.C