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A (NOT SO) SIMPLE MODEL

* ModelConfig: GlobalObservables,
Snapshots

« StandardProfilelLikelihoodDemo.C



Nomenclature

Parameters: POI vs Nuisance Parameters

= POI are never profiled or marginalized. Each POI has one value. You can collect results
for different values of the POI and make a plot.

Frequentist. profiling nuisance parameters to the observed data

Hybrid: frequentist test, but marginalizing nuisance parameters
(currently not used in CMS nor ATLAS; was used at LEP)

Bayesian: all parameters (POl and Nuisance Parameters) need a prior. The prior on the signal
Strength parameter IS a delicate issue (see http://root.cern.ch/root/html/tutorials/roostats/JeffreysPriorDemo.C.html).

CLs: Frequentist method. Intervals for Gaussians and Poissons are numerically equal to
Bayesian intervals with flat Priors. This is an “attractive” feature and makes it possible to cross
check a Frequentist result with a Bayesian method, but the intervals mean different things.
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http://root.cern.ch/root/html/tutorials/roostats/JeffreysPriorDemo.C.html
http://root.cern.ch/root/html/tutorials/roostats/JeffreysPriorDemo.C.html

The on/off problem (arxiv:0702156v4, Hybridinstructional.C and references, ATLAS StatForum recom.)

Often used for counting experiment: P(non|s) = /db Pois(non|s + b) w(b)

n(b) is a Bayesian prior and cannot be used in pure Frequentist methods. Choice of prior
IS not easy In most cases.

Alternatively, one can introduce a sideband measurement (which is also how knowledge

about b was obtained in reality): P(n1n, Nogt |5, b) = Pois(ngn|s + b) Pois(ngg|7b)

Vv
joint model main measurement sideband

= Using the Likelihood of a previous measurement propagates all errors properly: do
whenever that information is available!
(also see current discussions of “publishing the Likelihood” in ATLAS and CMS)

Using this approach, the knowledge about b is defined in a consistent way.

_ This HEP prototype problem has an exact analog in gamma ray astronomy
From the paper by Cousins, (GRA), upon which we base our notational subscripts “on” and “off”. The
Linneman, Tucker: observation of n., photons when a telescope is pointing at a potential source
(“on-source”) includes both background and the source, while the observation
of n.g photons with the telescope pointing at a source-free direction nearby
(“off-source”) is the subsidiary measurement. In both the HEP and GRA
examples, we let the parameter 7 denote the ratio of the expected means of
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http://arxiv.org/pdf/physics/0702156v4.pdf
http://arxiv.org/pdf/physics/0702156v4.pdf
http://root.cern.ch/svn/root/trunk/tutorials/roostats/HybridInstructional.C
http://root.cern.ch/svn/root/trunk/tutorials/roostats/HybridInstructional.C

Exercise

Build the Likelihood and print the tree.

w->pdf("model")->Print("t");

0x7fbd338e7800 RooProdPdf::model = 2.59541e-08 [Auto,Dirty]
0x7fbd338d8a00/V- RooPoisson::px = 6.51116e-07 [Auto,Dirty]
0x7fbd338b7c00/V- RooRealVar::x = 150
0x7fbd338ab600/V- RooAddition::splusb = 100 [Auto,Clean]
0x7fbd338b6e00/V- RooRealVar::s = 0
0x7fbd338b7400/V- RooRealVar::b = 100
0x7£fbd338d6000/V- RooPoisson::py = 0.039861 [Auto,Dirty]
0x7£fbd338d9600/V- RooRealVar::y = 100
0x7fbd338d6600/V- RooProduct::taub = 100 [Auto,Clean]
0x7fbd338b9c00/V- RooRealVar::tau = 1
0x7fbd338b7400/V- RooRealVar::b = 100
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Exercise

Do Bayesian integration using RooFit over b with a uniform prior.
(w->factory("PROJ::averagedModel(PROD::foo(pxlb,pylb,prior_b),b)");)
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Also do: Gaussian (0=20) and Lognormal (k=1.2) ARooPlot of
terms for the sideband. Boef-
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Global Observables

So far, the observable from a previous measurement (sideband measurement) was a
constant and that is fine for plotting the Profile Likelihood. When generating pseudo
experiments, one should take into account that this is not the true value. If the experiment
IS repeated 1000 times in reality, the observed number of events would fluctuate according
to the sideband’s Likelihood function. The same has to be done for the pseudo
experiments. Those observables need to be “labeled” as Global Observables so that
RooFit/RooStats can generate them properly.

Global Observables are not Observables

Observables are generated for every event, Global Observables are generated once per
toy. This is easy to understand with an example. The JES input as given by the
performance group is a Global Observable. In every toy experiment, it has exactly one
value and does not change from one event to the next. On the other hand, an invariant
mass which is an Observable (not global) is different for every event.
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Snapshots

A RooArgSet usually just specifies which variables belong to a set, but not what value they
have. To fix the values, this is what snapshots are for.

For a S+B model, the “signal strength modifier” ;1 might be 1 and for the B only model it
might be 0. The ModelConfigs for these two cases contain snapshots with =1 and ;=0
but are otherwise identical.
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Exercise: on/off Problem continued

Generate one fake observed event and call it “obsData”. Make a ModelConfig for the on/
off problem. Print it and write it to a root file.

Efe Eot View Optons Tools uw‘

= 2
DataStore modelData (Generated From model) ?:
Contains 1 entries B
Observables: s

1) x =139 L(0 - 500) "x" .

08

l'JT T ‘IIYT]TIY[.T T T.]TITI\'I.I T

=== Using the following for onOffProblem === 08
Observables: RooArgSet:: = (X) 04
Parameters of Interest: RoOOArgSet:: = (s) .
Nuisance Parameters: RooArgSet:: = (b) TR R % W e i
Global Observables: RooArgSet:: = (y) T ———————
PDF: RooProdPdf::model[ px * py ] = 0.000915446
Snapshot:
1) 0x7£8194229a00 RooRealVar:: s = 40 L(0 - 100) "s"

Run: root -1 'SROOTSYS/tutorials/roostats/
StandardProfilelLikelihoodDemo.C("onOffProblem.root","w", "onOffProb
lem" , "obsData") '

to produce the plot. 95% interval on s is : [8.78761, 69.62506]
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Optional Exercise

Re-do the previous exercise with Gaussian sidebands with a few different widths.
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TOOLS

* Hypothesis Tests: Test
Statistics, ToyMCSampler,
Detailed Output, Multiple
Test Statistics



Hypothesis Testing

Kendall 2A:

“In general, any hypothesis concerning the generating mechanism for observable random
variables is a statistical hypothesis.”

“... no hypothesis can be tested in isolation; there must be at least two competing
hypothesis (and we usually consider exactly two) even if one asserts proposition A and the

J D

other asserts ‘not-A’.

Null Hypothesis: the hypothesis that is tested
Alternative Hypothesis: another hypothesis that defines the choice of the critical region
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Test Statistics

Test Statistic: Maps high dimensional data (points in “observable”-space) to a real number.
(source?), Fred James: “Any function of the data is called a statistic.”

= a complicated shape that defines the boundary between acceptance and critical
region gets mapped to a point on a line

At the LHC, the Profile-Likelihood-Test-Statistic is used.

= takes nuisance parameters into account

RooStats has the three common test statistics used in the field (and more) |
- simple likelihood ratio (used at LEP, nuisance parameters fixed) |

Quip = Lusslit = 1)/Ly(u = 0) »
- ratio of profiled likelihoods (used commonly at Tevatron)
Qrev = Logo(p=1,0)/Ly(n = 0,7') Eﬂ

- profile likelihood ratio (related to Wilks’s theorem)
)\(,u) — L5_|_b(,LL7 ﬁ)/LS-l-b(IEL? ﬁ)
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Generating Toys

Toys are generated to get a distribution of possible outcomes of the test statistic values.
This distribution defines what is called: “the probability of obtaining data that is at least as
discrepant as the observed data”.
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ToyMCSampler is at the center of all Tools that use Toys

FrequentistCalculator and HybridCalculator use the ToyMCSampler to generate sampling
distributions. The HypoTestinverter can also use these calculators to set limits using toys.

Do not use the ToyMCSampler directly. To get a sampling distribution with profiled
nuisance parameters of the Null hypothesis, use the FrequentistCalculator and set the
number of toys for the Alternative hypothesis to zero.
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FrequentistCalculator

Profiling nuisance Parameters (conditional ensemble):

Nuisance parameters have to be fixed before doing a Frequentist Hypothesis test.
Essentially only two possible choices: set them to their nominal values (unconditional
ensemble) or do a fit (aka “profile”) to the observed data (conditional ensemble).

= pros and cons exist for both choices, but asymptotic formulae correspond to the
conditional ensemble

Alternatively, it is also possible to integrate instead of profile the nuisance parameters. The
integration is only defined when there is a Prior which is an inherit Bayesian object.
Because a Bayesian integration is used inside a Frequentist calculation, this is called the

Hybrid method and is implemented in the HybridCalculator which has an almost identical
interface to the FrequentistCalculator.
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Hypotheses Testing in RooStats
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Exercise

Write a macro that reads in a Workspace, ModelConfig and Data and then runs
FrequentistCalculator with MaxLikelihoodEstimateTestStat ( i ), BinCountTestStat,

SimpleLikelihoodRatioTestStat, RatioOfProfiledLikelihoodsTestStat and
ProfiledLikelihoodTestStat. Each result should be plotted and collected into a PDF file.

Optional: Look at $ROOTSY S/tutorials/roostats/HybridInstructional.C where the on/off
Problem is investigated with the HybridCalculator.
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Exercise

Now that you have a way to get a po-value with toys, put that function into a loop over
another parameter and draw a graph of this parameter. If you use this with the previous
“falling exponential + Gauss” model and call the mean of the Gaussian my and use it as

your “other parameter” then you just created a discovery plot with toys for the H—yy
channel.
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Asymptotic Calculations

Always good to know: the significance / :1/ (o for the profile Likelihood for discovery.

= Asymptotically, the significance is the square-root of the observed profile
Likelihood value under the null hypothesis.

RooStats::ProfileLikelihoodTestStat returns ¢y/2.
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o
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o - . .
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Exercise: go back and add this asymptotic result to the previous exercise.

Advanced |: Generate expected data and add the expected po to the plot.
Advanced ll: Add energy scale systematic uncertainty and observe the breaking of the

Asymptotics.
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