
Point Estimation

Point Estimation

The goal of Point Estimation is
to find the point in µ-space which gives

the “best” estimate (measurement) of the parameter µ.

We assume, as always, P(data|hypothesis) = P(X |µ) known.

What we mean by the “best” estimate depends very much on whether we
will use a Frequentist or Bayesian method.

Historically, the Bayesian was the first method, so we start there.
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Point Estimation Bayesian

Bayes’ Theorem for Parameter Estimation
For estimation of the parameter µ, we can rewrite Bayes’ Theorem:

P(µ|data) =
P(data|µ)P(µ)

P(data)

Evaluating P(data|µ) at the observed data is the likelihood function, so
we have:

P(µ|data) =
L(µ)P(µ)

P(data)

which is a probability density function in the unknown µ.

P(data) is just a constant, which can be determined from the
normalization condition:

∫
Ω P(µ|data) = 1

Note that the above cannot be Frequentist probabilities,
because hyp and µ are not random variables.
They determine the degree of belief in different values of µ.
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Point Estimation Bayesian

Priors and Posteriors

Assigning names to the different factors, we get:

Posterior pdf(µ) =
L(µ)× Prior pdf(µ)

normalization factor

The Prior pdf represents your belief about µ before you do any
experiments. If you already have some experimental knowledge about µ
(for example from a previous experiment), you can use the posterior pdf
from the previous expt. as the prior for the new one. But this implies that
somewhere in the beginning there was a prior which contained no
experimental evidence [Glen Cowan calls this the Ur-prior].

In the true Bayesian spirit, the posterior density represents all our
knowledge and belief about µ, so there is no need to process this pdf any
further.
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Point Estimation Early Frequentist

Point Estimation - from Bayesian to Frequentist

Up to the early 1900’s, the only statistical theory was Bayesian.

In fact, frequentist methods were already being used:
Linear least-squares fitting of data had been in use for many years,
although its statistical properties were unknown.

And in 1900, Karl Pearson published the Chi-square test
to be treated later under goodness-of-fit.

About the same time, another English biologist, R. A. Fisher, was one of
several people looking for a statistical theory that would not require as
input prior belief and would not be based on subjective probabilities.

He succeeded in making a frequentist theory of point estimation,
(but was unable to produce an acceptable theory of interval estimation).
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Point Estimation Frequentist

Point Estimation - Frequentist
An Estimator Eθ is a function of the data X which can be used to estimate
(measure) the unknown parameter θ to produce the estimate θ̂.

θ̂ = Eθ(X )

The goal:
Find that function Eθ which gives estimates θ̂
closest to the true value of θ.

As usual, we know P(X |θ)
and because the estimate is a function of the data,
we also know the distribution of θ̂, for any given value of θ:

P(θ̂|θ) =

∫
X
Eθ(X )P(X |θ)dX

.
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Point Estimation Frequentist

Frequentist Estimates

For our trial estimator Eθ, assuming θ = 0,
the distribution of estimates θ̂ might look something like this:
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Now we can see whether this estimator has the desired properties.
Is it (1) consistent, (2) unbiased, (3) efficient, and (4) robust?
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Point Estimation Frequentist

Consistency

Let Eθ be an estimator producing estimates θ̂n, where n is the number of
observations entering into the estimate.

Given any ε > 0 and any η > 0, Eθ is a consistent estimator of θ if an N
exists such that

P(|θ̂n−θ0| > ε) < η

for all n > N, where θ0 is the assumed true value.

That is, if Eθ is a consistent estimator of θ,
the estimates θ̂n converge (in probability) to the true value of θ.

Since all reasonable Frequentist estimators are consistent, I thought this
property was only of theoretical interest, until I discovered that Bayesian
estimators are not in general consistent in many dimensions.
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Point Estimation Frequentist

Bias

We define the bias b of the estimate θ̂ as the difference between the
expectation of θ̂ and the true value θ0,

bN(θ̂) = E (θ̂)− θ0 = E (θ̂ − θ0) .

Thus, an estimator is unbiased if, for all N and θ0,

bN(θ̂) = 0

or
E (θ̂) = θ0 .
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Point Estimation Frequentist

Bias vs Consistency
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Figure: examples of distributions of estimates with different properties. The
arrows show increasing amount of data.
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Point Estimation Frequentist

Efficiency

Among those estimators that are consistent and unbiased, we clearly want
the one whose estimates have the smallest spread around the true value,
that is, estimators with a small variance.

We define the efficiency of an estimator in terms of the variance of its
estimates V (θ̂):

Efficiency =
Vmin
V (θ̂)

where Vmin is the smallest variance of any estimator.

The above definition is possible because, as we shall see,
Vmin is given by the Cramér-Rao lower bound.
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Point Estimation Frequentist

Fisher Information

Let the pdf of the data X be denoted by f or by L:

P(data|hypothesis) = f (X |θ) = L(X |θ)

depending on whether we are primarily interested in the dependence on X
or θ.

The amount of information given by an observation X about the
parameter θ is defined by the following expression (if it exists)

IX (θ) = E

[(
∂ ln L(X |θ)

∂θ

)2
]

=

∫
Ωθ

(
∂ ln L(X |θ)

∂θ

)2

L(X |θ)dX .
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Point Estimation Frequentist

Fisher Information cont.

If θ has k dimensions, the definition becomes[
∼IX (θ)

]
ij

= E

[
∂ ln L(X |θ)

∂θi
· ∂ ln L(X |θ)

∂θj

]
=

∫
Ωθ

[
∂ ln L(X |θ)

∂θi
· ∂ ln L(X |θ)

∂θj

]
L(X |θ)dX .

Thus, in general, ∼IX (θ) is a k × k matrix. Assuming certain regularity
conditions, the same matrix can be expressed as the expectation of the
second derivative matrix see next slide:

[
∼IX (θ)

]
ij

= −E

[
∂2

∂θi∂θj
ln L(X |θ)

]
.
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Point Estimation Frequentist

from E (∂ ln L)2 to E (∂2 ln L)
Since L(x1, x2 . . . |θ) =

∏
i f (xi |θ) is the joint density function of the data,

it must be normalized:∫
Ω

L dX = 1, so

∫
Ω

∂ L

∂θ
dX = 0

Multiply and divide by L:∫
Ω

(
1

L

∂ L

∂θ

)
L dX = E

(
∂ ln L

∂θ

)
= 0

Differentiate again, and again move ∂ into the
∫

:∫
Ω

{(
1

L

∂ L

∂θ

)
∂ L

∂θ
+ L

∂

∂θ

(
1

L

∂ L

∂θ

)}
dX = 0

E

[(
∂ ln L

∂θ

)2
]

= −E

(
∂2 ln L

∂2θ

)
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Point Estimation Frequentist

Fisher Information cont.

So the Fisher information in the sample X about the parameter(s) θ is

[
∼IX (θ)

]
ij

= −E

[
∂2

∂θi∂θj
ln L(X |θ)

]
.

It can be seen that ∼IX (θ) has the additive property: If IN is the
information in N events, then IN(θ) = NI1(θ).

We will also see that information about θ is related to the minimum
variance possible for an estimator of theta.

But first we introduce the concept of Sufficient Statistics
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Point Estimation Frequentist

Sufficiency

Any function of the data is called a statistic.

A sufficient statistic for θ is a function of the data that contains all the
information about θ.

A statistic T (X ) is sufficient for θ if the conditional density function for X
given T , f (X |T ) is independent of θ.

Sufficient statistics are clearly important for data reduction.
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Point Estimation Frequentist

Cramér-Rao Inequality

Let the estimator θ̂ be an unbiassed estimator of θ with sampling
distribution q(θ̂|θ).

Then the variance of the sampling distribution,

V (θ̂) =

∫
[θ̂ − E (θ̂)]2q(θ̂|θ)d θ̂ ,

is related to the information by the Cramér–Rao inequality:

V (θ̂) ≥ 1

Iθ̂
=

1

E
[(

∂ ln L
∂θ

)2
] .
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Point Estimation Frequentist

The Usual Estimators

The most common general-purpose estimators are:

I The method of moments is based on approximating f (X |θ) by its first
few moments. It is surprisingly efficient for an approximate method,
but will not be treated here.

I Maximum likelihood is the most important method, mostly because it
can be shown to be asymptotically efficient.

I Least squares is asymptotically efficient for fitting data in
histograms, and is generally easier to apply than M.L.
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Point Estimation Frequentist

Maximum Likelihood

The likelihood of a set of N independent observations X is

L(X|θ) =
N∏
i=1

f (Xi , θ) ,

where f (X , θ) is the p.d.f. of any observation X .
The maximum likelihood estimate of the parameter θ is that value θ̂ for
which L(X|θ) has its maximum, given the particular observations X.
Note that maximizing ln L or L gives the same result.
The likelihood equation is

∂

∂θ

N∑
i=1

ln f (Xi , θ) =
∂

∂θ
ln L(X, θ) = 0 .

since that is the analytic way to find the maximum, but in practice we will
usually find the maximum numerically.

F. James (CERN) Statistics for Physicists, 2: Point Estimation April 2012, DESY 18 / 42



Point Estimation Frequentist

Asymptotic Properties of Maximum Likelihood

Asymptotically (for very large data samples), the M. L. estimator has
optimal properties:

I It is consistent.

I It is efficient, the variance V (θ̂) being given by the Cramer–Rao lower
bound

V (θ̂) −→
N→∞

{
E

[(
∂ ln L

∂θ

)2]}−1

.

I The estimates θ̂ are Normally distributed.

I Since it is consistent, it is asymptotically unbiased.
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Point Estimation Frequentist

Asymptotic Properties of Maximum Likelihood 2

If the range of the data is independent of the parameters θ, then the
variance V (θ̂) may be estimated by

V̂ (θ̂) =

{(
− ∂2 ln L

∂θ2

)∣∣∣∣
θ=θ̂

}−1

.

The estimate
√

N(θ̂ − θ) is distributed as N[0, I−1
1 (θ)].

(Estimates are asymptotically Gaussian-distributed.)

We will give an example where the range of the data depends on the
parameter, and the above properties do not hold..

F. James (CERN) Statistics for Physicists, 2: Point Estimation April 2012, DESY 20 / 42



Point Estimation Frequentist

Finite Sample Properties of Maximum Likelihood

I For finite samples, M.L. estimates are efficient only when there exist
sufficient statistics for the parameter(s) being evaluated, and that can
be shown only for the exponential family, consistent with the Darmois
Theorem.

I Although the estimates are in general biased, they have a more
important property, invariance, which is incompatible with
unbiasedness because the definition of bias is not invariant.
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Point Estimation Frequentist

Least Squares

Consider a set of observations Y1, . . . ,YN from a distribution with
expectations E (Yi ,θ) and covariance matrix ∼V . The θ are unknown
parameters and the E (Yi ,θ) and Vij(θ) are known functions of θ.

In the method of least squares the estimates of the θk are those values θ̂k
which minimize

Q2 =
N∑
i=1

N∑
j=1

[Yi − E (Yi ,θ)](∼V
−1)ij [Yj − E (Yj ,θ)]

= [Y − E (Y,θ)]T ∼V
−1 [Y − E (Y,θ)] .
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Point Estimation Frequentist

Least Squares 2

When the observations Yi are independent, it follows that they are
uncorrelated, and the covariance matrix is diagonal, with elements

Vii = σ2
i (θ) .

The covariance form then simplifies to the familiar sum of squares

Q2 =
N∑
i=1

[Yi − E (Yi ,θ)]2

σ2
i (θ)

The θ̂ are found by solving the Normal equations

∂Q2/∂θ = 0 ,
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Point Estimation Frequentist

Linear Least Squares

The method of linear least squares is applicable when the variances σ2
i are

independent of the r parameters θ = (θ1, . . . , θr ), and the expectations
E (Yi ,θ) are linear in the θj ’s,

E (Yi ,θ) =
r∑

j=1

aijθj , i = 1, . . . ,N

or in matrix notation
E (Y,θ) =∼A θ

The elements aij of the design matrix ∼A are given by a model.

In the linear case, the solution of the Normal equations is

θ̂ = (∼A
T
∼V
−1
∼A)−1

∼A
T
∼V
−1 Y .
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Point Estimation Frequentist

Linear Least Squares cont.
Since the linear least squares solution is found by matrix inversion and
multiplication (no minimization needed), one often solves the non-linear
problem by linearization, setting:

aij =
∂E (Yi , θ)

∂θj

Example of linear least squares: fitting a curve to a polynomial.

Yi = Y (Xi ) = θ0 + θ1Xi + θ2X 2
i + θ3X 3

i

is clearly of the linear form. To find the matrix ∼A one only needs to
evaluate the (j−1)th power of Xi .
Solving the Normal equations ∂Q2/∂θ = 0 , we find:

θ̂ = (∼A
T
∼V
−1
∼A)−1

∼A
T
∼V
−1 Y .

which is exact and unique as long as ∼A
T
∼V
−1
∼A is non-singular.
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Point Estimation Frequentist

Least Squares

For fitting data in histograms, the asymptotic properties of least squares
are the same as for maximum likelihood, and in fact the two methods are
often identical. When they are different, it is believed that M.L. generally
approaches the asymptotic limit faster than L.S.
The biggest difference is largely practical.
If the data are already grouped into bins or points, L.S. is more convenient
and there is no advantage in using M.L.

The subject of M.L. and L.S. fitting will treated in more detail in the
second half of the course.
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Point Estimation Frequentist

Point Estimation: Example: Poisson data
Example: In a Poisson process, we observe 3 events.

L(µ) = P(3|µ) =
e−µµ3

3!
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The peak in the likelihood occurs at µ = 3.
Generalizing from 3 to n, we get the expected result:
with n events observed, µ̂ = n
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Point Estimation Frequentist

Example: Weighted Average
Suppose we have Normally-distributed observations Xi of a quantity µ,
each Xi being distributed with standard deviation σi :

f (Xi |µ) = N(µ, σ2
i ) =

1

σi
√

2π
exp

[
−1

2

(Xi − µ)2

σ2
i

]
.

We wish to use this data to estimate µ. The likelihood function is the
product of the f (Xi |µ), and its logarithm is:

lnL(µ) = k −
∑
i

1

2

(Xi − µ)2

σ2
i

where k is a constant. It is clear that in this case,
maximizing the log likelihood is equivalent to minimizing χ2.
In both cases, the solution is the familiar weighted average:

µ̂ =

∑
i
Xi

σ2
i∑

i
1
σ2
i
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Point Estimation Frequentist

Example: A Poor M. L. Estimator

Suppose that one observes N events Xi chosen randomly from a uniform
distribution between 0 and θ, where the upper bound θ is the unknown
parameter.
This is a case where the range of the data depends on the value of the
parameter θ.
Since θ ≥ Xi for all i , the likelihood function L = θ−N will have its
maximum at θ̂ = Xmax, where Xmax is the largest observed value of X .
It is clear that this estimator (almost) always gives a result which is too
small, and the obvious correction is to use the common-sense estimate:

θ̂cs = Xmax +
Xmax

N
.

This estimate in fact turns out to be unbiased, as can easily be verified.
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Point Estimation Frequentist

Example: A Poor M. L. Estimator cont.
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Point Estimation Frequentist

Robustness

Suppose we wish to estimate of the centre of an unknown, symmetric
distribution. The centre of a distribution is defined by a location
parameter. Some examples are:

I The mean is the expectation of the variable X .

I The median is that value X for which the cumulative distribution has
F (X ) = 0.5.

I The mode is that value of X for which the p.d.f. has a maximum.

I The midrange is defined when the possible values of X are limited to
the range [Xmin,Xmax]. Then the midrange is (Xmin + Xmax)/2.
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Point Estimation Frequentist

Robustness cont.

For any particular sample of (finite) data Xi , we can define:

I The sample mean is the mean or average of the Xi .

I The sample median is the value X such that half the Xi lie above it
and half below. If the number of data values is odd, it is the central
value. If the number is even, it is usually taken as halfway between
the two central values.

I The sample mode is the value of X halfway between the two nearest
values of Xi .

I The sample midrange is halfway between the smallest and largest
values of Xi , that is (Xi min + Xi max)/2.
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Point Estimation Frequentist

Robustness 3
The sample mean is the most obvious and most often used estimator of
location, because

I it is consistent whenever the variance of the underlying distribution is
finite (law of large numbers);

I it is optimal (minimum variance, unbiased) when the underlying
distribution is Normal.

However, if the distribution of X is not Normal, the sample mean is not
the best estimator of the mean of the distribution, even when the mean of
the distribution exists. Below we list the best estimator of location for
some important distributions:

Distribution Minimum-variance location estimator

Normal sample mean
Uniform midrange (mean of extreme values)
Cauchy maximum-likelihood estimate
Double-exponential median (middle value)
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Point Estimation Frequentist

Robustness 4
A robust estimator is one which, although not optimally efficient for any
one distribution, has a high efficiency over a broad range of distributions.
Let us define:

I The trimmed mean of the total of N observations: remove the n/2
highest values and the n/2 lowest values, and compute the mean of
the remaining N − n observations.

I The Winsorized mean of the total of N observations: replace the n/2
highest values by the highest remaining value, and the n/2 lowest by
the lowest remaining value, and compute the mean of the new sample
of N values.

For both estimators there is one free parameter, usually taken as half the
fraction of remaining (unchanged, or not rejected) values,

r =
N − n

2N
.

Note that for r = 0.5, both estimators are in fact the sample mean, and as
r → 0, both become equivalent to the sample median.
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Point Estimation Frequentist

Robustness 5
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Point Estimation Frequentist

N-dependence of errors

Physicists distinguish between two sources of error:
statistical errors and systematic errors.

Statisticians distinguish two different sources of error:
The bias and variance of an estimator.

We will distinguish three different sources of experimental error, each with
its own dependence on the number of observations n.

I The systematic error usually does not decrease with n.

I The bias of an asymptotically unbiased estimator typically decreases
like n−1.

I The statistical error, or square root of the variance of an estimator,
typically decreases like n−1/2, but there are exceptions: (e.g.
midrange in slide 46.)
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Point Estimation Frequentist

Why least squares?

1. When the data are Gaussian-distributed :
Maximum Likelihood reduces to Least Squares.

But Least Squares is older than M.L. So why was it used? Probably
because:

I In the Decision-Theoretic Approach, it follows from a quadratic penalty
or cost function.

I When the model is linear, the solution is a linear function of the data.

2. So what happens if we try minimizing the sums of different powers of
the residuals?
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Point Estimation Frequentist

Alternatives to Least Squares
Should one sometimes use least cubes, least absolute values, etc.?

We call ap the Lp estimate of location if ap minimizes the quantity

Lp(a) =
N∑
i=1

|Xi − a|p .

For all p ≥ 1, the Lp estimate is well-defined, and the properties of these
estimates have been studied [Rice and White, 1964].

1. For p = 1, ap is the sample median.
2. For p = 2, ap is the sample mean, the least-squares estimator.
3. For p =∞, ap is the sample midrange, the average of the lowest and

highest values. L∞ is the Chebyshev Norm.
4. As p → −∞, ap tends to the sample mode, the point of highest

density, corresponding to the maximum of the pdf.

So small (or negative) values of p give more weight to points near the
middle of the distribution,
and large values give more weight to the tails.
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Point Estimation Frequentist

Why least squares?

Asymptotic variances of Lp location estimates.
for some symmetric distributions

L1 L2 L∞
Distribution (median) (mean) (midrange)

Uniform 1/4N 1/12N 1/(2N2 + 6N + 4)

Triangular 1/6N (4− π)/4N

Normal π/2N 1/N π2/12 log N

Double-exponential 1/2N 2/N π2/12

Cauchy π2/4N ∞ ∞

This means that when fitting a set of points to a hypothesis
(for example, fitting a track to measurements in a detector)
the usual least-squares estimator, based on the L2 Norm,
is optimal only if the measurements are Normally distributed.
For some detectors, another Lp norm may be more efficient.
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Point Estimation Frequentist

Examples where Least Squares is not Optimal

1. Fitting Points to a curve
when the point measurements are not Normally distributed.

When the distribution of measurements has longer tails than a Gaussian,
use the Lp norm with p < 2.

The opposite extreme (distributions with no tails at all) may be attained
with some detectors based on discrete elements (strips or wires) such that
a hit defines a window through which the track must pass.
In this case, the Chebyshev Norm may provide much superior accuracy
compared with least squares.

See F. James, Fitting Tracks in Wire Chambers using the Chebyshev Norm
instead of Least Squares, NIM 211(1983)145
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2nd Example where Least Squares is not Optimal

2. Fitting data to a Histogram
when there are not many events in some bins.

Then the Poisson distribution of events in each bin is not approximately
Gaussian, and it is better to use the binned likelihood.

See Baker and Cousins, Clarification of the Use of Chi-square and
Likelihood Functions in Fits to Histograms NIM 221 (1984) 437
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Point Estimation Frequentist

2nd Example where Least Squares is not Optimal

from: Baker and Cousins, Clarification of the Use of Chi-square and
Likelihood Functions in Fits to Histograms NIM 221 (1984) 437

The likelihood function for the Poisson-distributed histogram contents is

L(θ) =
∏
i

e−µi (θ)µnii (θ)/ni !

where µi (θ) is the content of the i th bin predicted by the model, and ni is
the observed contents of the bin.
It is convenient to work with the likelihood ratio λ which is the above
likelihood divided by the likelihood for data without errors. Then the
quantity −2 lnλ asymptotically obeys a Chi-square distribution, and the
quantity to be minimized reduces to

χ2
λ = −2 lnλ = 2

∑
i

[µi (θ)− ni + ni ln(ni/µi (θ))]
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