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Unfolding is required, due to migration effects, for the measurement of distributions in HEP, where the quantity of interest is often measured indirectly.
Unfolding is an linear inverse problem with a coefficient matrix, which is usually ill-conditioned. Techniques of standard linear algebra no longer apply and
the numerical treatment becomes more difficult. Available additional information can be used to stabilize the solution, without introducing a significant
bias. The use of these regularization methods requires some insight into statistical behavior and mathematical operations.
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1. Unfolding and the inverse problem

Cross section xi as a function of a variable is measured in bins (bin index i), in ideal case of
perfect resolution and for acceptance Aii:

(cross section)i ≡ xi =
ni,cand − τ · ni,bg

Aii
[∫
L dt

]
The measurement of distributions, cross sections in Hep . . . is complicated by

• migration effects, bias, limited acceptance, and limited statistical precision

An event originating from bin j is measured in another bin i, due to limited detector resolution.
It is impossible to consider one bin without other bins: A→ A = matrix with elements Aij:

expected:
[∫
L dt

]
·
∑
j

Aij xj + τ · ni,bg = ni,cand measured

using matrix formalism:
[∫
L dt

]
·Ax+ τnbg = ncand

In the following the equations are written without the factor
[∫
L dt

]
and without background,

and the measured histogram-vector y:

Ax = y + e

(vector e = error) to be solved for the cross section x, given A and the measurement y.
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Direct and inverse processes

The process of the transition between the true distribution f(t) and the measured distribu-
tion g(s) for linear inverse problems is described by the Fredholm integral equation of the first
kind: ∫

Ω

K(s, t) f(t) dt+ b(s) = g(s)

(b(s) = background contribution). Two types of processes are based on the integral equation:

direct process (MC) true/MC dist. f(t) =⇒ g(s) measured dist.

inverse process (unfolding) measured dist. g(s) =⇒ f(t) true dist.

Discretization: the integral equation becomes an (usually ill-posed) linear system of equations:

Ax = y + e yi =

∫ si

si−1

g(s) ds i = 1, 2, . . . , m

(assuming a case without background contribution) with the representation

true distribution f(t)⇒ x n-vector of unknowns

measured distibution g(s)⇒ y m-vector of measured data

Kernel K(s, t)⇒ A rectangular m-by-n response matrix .

The variables s, t and vectors x, y can be multi-dimensional. Elements of the response matrix A
are positive, usually probabilities, and include efficiency.
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Discretization

• Several different methods can be applied in the discretization: simple binning, basis func-
tions: orthogonal or B-splines (allows re-weighting of MC) . . . ;

• unfolding is independent of the assumed f(t)MC, if the Fredholm equation above is correct.

Problems in Particle Physics differ from problems in other fields:

• input errors are well-known (Poisson data, . . . covariance matrix V y);

• covariance matrix of result is required, no bias, small correlations;

• dimension parameters are small compared to other fields;

• the response matrix A has to be determined in particle physics from MC sample (statistical
errors).

Unfolding with the inverse transition is a complex mathematical and statistical problem (ill-posed
problem, instability of solution) and requires a good understanding of the detector and the
measurement process, decribed in the MC.
Straightforward methods can result in solutions which look chaotic. Alternative home-made
methods usually produce biased results.

The response A should depend only on the detector properties, it should not depend on the
expected result.
The use of histograms for the data and the response matrix (simple binning) may not be optimal.
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Response matrix . . . from Monte Carlo simulation

y measured
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x true

The response matrix A is generated from Monte Carlo x− y-
pairs.

Example: plots of x versus y, with small non-linearity in
y = y(x) . . .

How many bins should be used for x and y?

The resolution is deteriorated, if too few bins are used (m
too small).

use number of y-binsm & 2n

Never use n = m with identical bins! –

“inverse crime”: . . . the numerical methods contain features that effectively render the inverse
problem less ill-posed than it actually is, thus yielding unrealistically optimistic results.
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2. Why are inverse problems ill-posed?

Inverse problems, described by the Fredhold equation of first kind . . .∫
Ω

K(s, t) f(t) dt+ b(s) = g(s)

A x + b = y + e

arise quite naturally.

measured values y = Poisson-distributed ⇒ ML

= normal-distributed ⇒ LS with normalization: e ∈ N(0, 1) V y = I

A problem is called ill-posed, if “a small perturbation of the data can cause a large perturbation”
of the solution. The system of linear equations from the discretization has a ill-conditioned matrix
with a large condition number κ, even if there are no measurement errors.

In particle physics there are statistical errors in the measurement by the detector and in the MC
simulation of the detector response, plus systematic errors – but we want a numerical result with
information on uncertainties (i.e. the covariance matrix).
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Effect of a Gaussian resolution

An even function f(t) with period 1 can be approximated by a sum with n terms

f(t) ≈ a0 +
n−1∑
k=1

ak cos (πkt) g(s) ≈ α0 +
n−1∑
k=1

αk cos (πks)

Convolution of functions cos (πkt) by a kernel function K(s, t) ≡ K(s− t) given by a Gaussian
resolution function (standard deviation σ):

∫ +∞

−∞

1√
2πσ

exp

(
−(s− t)2

2σ2

)
× cos (πkt) dt = exp

(
−(πkσ)2

2

)
× cos (πks) ,

The amplitude is attenuated by an
exponential factor, which will
become � 1 for larger values of k.

exp
{
− (πkσ)2

2

}
× cos(πkt) t ∈ [0, 1]
σ = 0.01k = 1
k = 7 k = 37

k = 86
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Singular value decomposition SVD

. . . recommended by mathematicians.

Decomposition of the general m-by-n matrix matrix A (assuming m ≥ n):

A= UΣV T =
n∑
i=1

σiuiv
T
i

ATA =
(
UΣV T

)T
UΣV T = V Σ2V T (diagonalization of symmetric matrix)

U = (u1, . . . ,un) ∈ Rm×n orthonormal columns

V = (v1, . . . ,vn) ∈ Rn×n orthonormal columns

Σ = diag {σ1, . . . , σn} = UTAV diagonal

with non-negative diagonal elements σi, called singular values, in non-increasing order.

The SVD allows the least squares solution of the linear system Ax = y + e for x, by the product
with the generalized inverse A†:

A†= V Σ−1UT

A†A = V Σ−1UT UΣV T = I
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Left- and right-singular vectors

SVD . . . a new way to see into the heart of a matrix.
Gilbert Strang

Singular value decomposition A = UΣV T =
n∑
i=1

σiuiv
T
i



(n)

(m) A


=


u1 u2 . . . un−1 un


·


σ1 0

σ2

. . .

σn−1

0 σn




vT
1

vT
2

· · ·
vT
n−1

vT
n



Matrix Σ = diag(σ1, . . . , σn) with ordered singular values σ1 ≥ σ2 ≥ . . . σn ≥ 0.

UTU = V TV = V V T = I

Right-singular vectors are equal to the eigenvectors of ATA (least squares normal eauations).
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Spectrum of singular values

Spectrum of singular values of the Gaussian response matrix A. The bars are for a Gaussian
resolution of σleft equal to the bin width (left bar) and σright = σleft/2 (right bar).
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The SVD matrices represent solely the properties of the response matrix of the measurement
process.

Solutions of matrix equations are inaccurate in case of a large condition number κ = σ1/σn.
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The direct and the inverse problem

(1) The direct problem:

y = Ax = UΣV Tx =
n∑
j=1

σj
(
vT
j x
)
uj

The “true” vector x is decomposed into components
(
vT
j x
)
, and the expected “measured” vector

y is a superposition of the vectors uj , weighted with singular values σj . Components with σj = 0
or σj � 1 disappear in the real measured vector y + e.

(2) The inverse problem: least squares solution using generalized inverse A†

x̂ = A†y = V Σ−1
(
UTy

)
=

n∑
j=1

1

σj

(
uT
j y
)
vj=

n∑
j=1

1

σj
cjvj

The estimated “true” vector x̂ is a superposition of the vectors vj, with “measured” Fourier
coefficients cj =

(
uT
j y
)
, and weighted with the inverse singular values 1/σj.

V x = A†V yA
†T

= V Σ−2V T =
n∑
j=1

(
1

σ2
j

)
vjv

T
j (assuming V y = I)

The estimated “true” vector x̂ and its covariance matrix V x will be dominated by components
with small singular values σj.
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Properties of the LS solution

The potential bias and the accuracy of a method should be checked.

(1) Check of a potential bias in the solution:

estimator x̂ = A†y with E [y] = Axexact

E [x̂] = A†E [y] =
(
A†A

)
xexact = xexact

⇒ the estimator x̂ is unbiased, because: resolution matrix Ξ ≡ A†A = 1.

(2) Variance: Lower bound of the variance is given by the Rao-Cramér-Frechet (RCF) inequality.
The covariance matrix V x is equal to the lower bound:
⇒ the estimator x̂ has the smallest possible variance for an estimator with zero bias.

General statement by the Gauss-Markov theorem: the least square estimate is unbiased and efficient.

But: the result x̂ will often show large, unacceptable fluctuations!

The fluctuations are not caused by inaccurate matrix elements (from Monte Carlo), but are
inherent in the problem, i.e. the response matrix A and its “smoothing” properties.
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Plot of the singular vectors

Note: The measurement is represented by coefficients cj, each representing a whole distribution
uj, by cj =

(
uT
j y
)
, with white noise (same uncertainty in all frequencies).

The solution

x̂ =
n∑
j=1

1

σj
cj vj

is expressed as a superposition of nor-
malized eigenvectors vj, each

• proportional to the Fourier coeffi-
cient cj, and

• weigthted by 1/σj, resulting in

blue noise (uncertainty increas-
ing with frequency).

Note: building blocks of the solution are not single bins, but whole distributions vj
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Naive result with narrow bins

Example of unfolding problem with narrow bins

Perfect resolution (no smearing)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

Naive unfolding by inversion

10 20 30

-2000

0

2000

4000 Parameter and cov.matrix (inversion)  [0]

Huge fluctuations, due to large negative
correlations: neighbour bin −95% (second
+85%).

True curve f(x) is shown in red.
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Example with truncation

Example of unfolding problem with narrow bins

Perfect resolution (no smearing)

10 20 30
0

500

1000

X = true variable  [1]

Histogram
for sample with 10 000 entries.

Truncation method (15 terms kept)

10 20 30
0

500

1000

Parameter Cov.matrix  [0]

Reduced fluctuations

True curve f(x) is shown in red.
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Correlation matrices – Examples

correlation coefficient ρij =
Vij√
ViiVjj

=
Vij

σi × σj

Colour graph of correlation coefficients ρ with range −1 . . .+ 1:

Direct inversion

0 10 20
0

10

20

Parameter and cov.matrix (inversion)  [7]

Large negative and positive correlations: neigh-
bour bin −95%, second neighbour +85%.

Truncation method (15 terms of 20 kept)

0 10 20
0

10

20

Parameter Cov.matrix  [15]

Correlations reduced, negative for neighbour
bin −40% and second neighbour −30%.

V. Blobel – University of Hamburg Data Unfolding page 17



Strategies

Naive unfolding results will be wildly fluctuating and are not acceptable.

Wider bins – reduce number n of bins of estimated “true” vector x̂; this will avoid very small
singular values σj.

Cut/truncation – ignore insignificant Fourier coefficients cj (value ≈ uncertainty) with small
values σj:

x̂ = A†y =
n∑
j=1

1

σj
cjvj ⇒

n0∑
j=1

1

σj
cjvj with n0 < n

A sharp cut-off may result in Gibbs oscillations.

Regularization – add e.g. “smoothing” term ‖Lx‖2 to least squares condition:

minimize
a

Fτ (x) = ‖Ax− y‖2 + τ ‖Lx‖2 = minimum

Result is a smooth cut-off, that avoids Gibbs oscillations.

Parametrized unfolding – if a well-known parametrization f(t;a) has to be tested, this
parametrization can be used directly, without the need for regularization.

V. Blobel – University of Hamburg Data Unfolding page 18



Parametrized unfolding

The parametrization f(t) ≡ f(t; a) can be directly used in unfolding, using the response matrix
A, without the need to introduce a regularization.
Example: Gaussian resolution function with a std. dev. of 0.3 assumed, and

f(t; a) =
(1 + a t)

(1 + a/2)
with a = 1 t ∈ [0, 1] s ∈ [−0.3,+1.3]

The bin content yi is approximated using the elements of an auxiliary vector x:

yi =

∫ si

si−1

ds g(s) = AT
i x with xj(a) =

∫ tj

tj−1

dt f(t; a) j = 1, 2, . . . , n

Unfolding: minimize
a

F (a) = (Ax(a)− y)T V −1
y (Ax(a)− y)

The result of the parameter fit in a single example (left, middle) is â = 1.09± 0.18.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Y

0
50

100
150
200
250
300
350
400
450

(a) Data and unfolding fit

0.0 0.2 0.4 0.6 0.8 1.0
X

0
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100
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(b) Fitted parametrization

0.0 0.5 1.0 1.5 2.0
slope

0

100

200

300

400

500
(c) Fitted slope parameter

From 105 simulated reconstructions (right): fitted slope a has uncertainty of ≈ 0.18.
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3. Regularization methods

Key idea: incorporate certain a-priori assumptions about the solution, e.g. smoothness
⇒ control the norm of the residuals and, simultaneously, the norm of the solution x.

Thikhonov-Phillips: Fτ (x) = ‖Ax− y‖2 + τ ‖Lx‖2 = minimum τ > 0

minimize
x

{
‖Ax− y‖2 + τ ‖Lx‖2} =⇒ A† =

[(
ATA+ τLTL

)−1
AT
]

Norm-regularization with L = 1, or (better) based on derivatives, e.g.

most popular: sec.der. Lr2 =



1 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 1


= UDCT Λ U

T
DCT

(second derivatives ≈ −xi−1 + 2xi − xi+1, and first derivative for the first and the last bin.)

• Regularization will not introduce unwanted bias, but allows to reduce or suppress insignificant
contributions (noise), that would destroy the unfolding result.

• Regularization strength depends on the regularisation parameter τ .
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Solution with regularization

Orthogonalization is mathematically more complicated because there are two terms, the
(1) squared residuals sum, and (2) the regularization term with the regularisation parameter τ .

Math: generalized singular value decomposition GSVD or double diagonalization.

Solution: x̂ =
n∑
j=1

ϕj
σj
cj vj with Fourier coefficients cj

filter factor ϕj =
σ2
j

σ2
j + τ

or =
λ

λ+ τ

= 1 . . . 0.5 . . . 0

ϕk = 0.5 for τ = σ2
k = λk
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index j
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filter factor dependence
truncation
regularization
α=2

low-pass filter

The value of the regularization parameter τ can be determined according to the significance of
the Fourier coefficients.

The result x̂ is expressed as a superposition of eigenvectors vj , each weighted with the
Fourier coefficient cj and 1/σj ; the filter factor ϕj reduces the effect of insignificant
contributions, without introducing a bias.
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Eigenvalue spectrum and Fourier coefficients

Eigenvalues = λj

5 10 15
1E-8

1E-7

1E-6

1E-5

1E-4

0.001

0.01

0.1

1

Eigenvalues

The eigenvalues decrease by ≈ 8 orders of mag-
nitude, due to limited resolution.

Fourier coefficients = cj

0 5 10 15

-1

0

1

10

Fourier coefficients and filter dependence

Note: the cj are independent, and all have
uncertainty 1 ⇒ only ten coefficients are sig-
nificant.
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Regularization parameter I

Discrepancy principle (Morozov): choose τ such that ‖Axreg − y‖2
2 = ndf

L-curve method: plot ‖Lxreg‖2 versus ‖Axreg − y‖2 for a set of τ -values ⇒ dependence
has shape of an L with a distinct corner: optimal value of τ .

Effective number of degrees of freedom: (Run) determine ndf from spectrum of Fourier
coefficients cj, and determine τ such that sum of filter factors

n∑
j=1

λj
λj + τ

= ndf

Minimum of global correlation: minimum mean value of global correlation coefficients

Definition: ρj =

√
1−

[
(V x)jj ·

(
V −1

x

)
jj

]−1

with 0 ≤ ρj ≤ 1

The global correlation coefficient is a measure of the total amount of correlation between element j of x and all other elements.

The arithmetic and the geometric mean of all n global correlation coefficients is determined
for a large range of τ -values: the τ -value with the smallest mean value is accepted.

. . . seems to be a good method, result similar to L-curve method!
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Regularization parameter II

L-curve
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weak regularization

strong regularization

Dependence as a function of τ
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exponent n of tau = 10^n

optimal regularization in region of largest
curvature

circle=minimum

magenta/cyan=mean global correlation
green=χ2 probability

red=average probability
blue=relative sigma
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Example: a steeply falling distribution

Unfolding of inclusive jet cross section
as a function of pT:

• pT, measured by calorimeter,
systematically underestimated
(bias);

• steeply falling: transformation to√
pT ⇒ variable bin size and con-

stant std. deviation;

• region of small pT unmeasurable:
uncertainties increase for region
pT → 0

• unfolding in one step allows the
consistent determination of the
covariance matrix.

Fourier coefficients cj,

0 4 8 12 16 20 24 2810−4

10−3

10−2

10−1

100

101

102
cj

ϕj cj

(1− ϕj) cj

filtered coefficients, and difference

jet transverse momentum pT distribution

MC simulation

Correction for (1) bias, and for (2) limited resolution (smearing) using bin-by-bin CF method,
done in two separate steps in a FNAL-publication.
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4. Unfolding in physics . . . and astronomy

Particle physics
Event data multi-dimensional

n ≈ 20, m ≈ 50, n×m ≈ 1000

Picture deblurring (HST)
Picture data 2-dimensional

n = m = 1000× 1000 = 106 n2 = 1012

• Small matrix dimensions allow analytical
solution with complex matrix operations:
x̂ = A†y;

• orthogonalization by e.g. SVD or diagonal-
ization;

• regularization with (e.g. derivative) matrix
L;

• covariance matrix by propagation of uncer-

tainties: V x = A†V yA
†T

• Only iterative solutions possible;

• regularization implicit (stop early);

• e.g. Richardson-Lucy (1972, 1974);

• matrix often sparse (point spread func-
tion PSF);

• only matrix-vector products;

• no covariance matrix meaningful
and technically impossible.

complex matrix operations: space requirement ∝ n2 and cpu time requirement ∝ n3
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Richardson-Lucy algorithm

The Richardson-Lucy (RL) algorithm has been used for the deconvolution of images and spectra
from the Hubble space telescope (HST). The derivation of the formula for one iteration step

x
[k+1]
j :=

x
[k]
j

εj

m∑
i=1

yi
ci
Aij with ci =

n∑
j=1

Aijx
[k]
j and εj =

m∑
i=1

Aij

make use of Bayes theorem.
Richardson, W.H., Bayesian-based iterative method for image restoration”, Journal of the Optical Society of

America, vol 62, 55-59 (1972) Lucy, L.B., An iterative technique for the rectification of observed distribution,

Astronomical Journal, vol 79, 745-754 (1974)

Empirically the method converges to the maximum-likelihood solution for Poisson distributed
data.

Available in PC-Photo-software (Raw Therapy).

Another iterative method is the Landweber iteration, which converges to the least squares solution.

A method identical to Lucy–Richardson convolution is used in particle physics:
G. DAgostini, A multidimensional unfolding method based on Bayes theorem, NIM A362 (1995) 487

(used in several large collaborations).

V. Blobel – University of Hamburg Data Unfolding page 27



Particle physics problems 2 extreme cases

Soft migration effects Indirect measurement

Experiment with

• accurate measurement;

• standard deviation < bin width;

• no bias, only migration (and limited accep-
tance);

• “high” purity and stability in the bins.

Question: Is unfolding necessary?

• No direct measurement possible,

• but some measured distribution(s) in a
certain sense “correlated” with physics
variable of interest;

• i.e. almost no measurement.

Question: Is unfolding possible?
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Example for transformation problem Indirect measurement

Measurement: flux of cosmic gamma-
rays, up to tens of TeV, by system of
two Cherenkov telescopes:

• Observable 1: energy estimate –
good correlation with energy;

• Observable 2: light distribution
parameter, has some correlation
with energy;

• Observable 3: angle, no direct
correlation with energy, but en-
ergy estimates differ for different
angles.

3-dim distribution of observables used
to unfold (reconstruct) (1-dim) energy
flux. (RUN/TRUEE)

Plots from a MC study.
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HEP acceptance correction Correction factor method (CF)

If there is no migration between bins:

(cross section)i ≡ xi =
ni,cand − τ · ni,bg

Aii
[∫
L dt

] =⇒ ni,cand − τ · ni,bg

nMC
rec /n

MC
gen

[∫
L dt

]
using identical bins for the true and measured variable. The correction factor nMC

gen /n
MC
rec =

(S/P )−1 is the inverse acceptance probability of the bin.

This method, also called bin-by-bin correction, is used in many experiments
even if there are migration effects between bins, fixing the migration to the input assumption
(MC).
Purity P and stability S determined from an adjusted/optimized Monte Carlo event sample

Purity P =
nMC

rec,gen

nMC
rec

Stability S =
nMC

rec,gen

nMC
gen

(
nMC

rec

nMC
gen

=
S

P

)

• Very popular in HEP as “approximate” method;

• a method without any matrix (operation), without the use of data covariance matrix V y;
calculation of covariance matrix V x undefined;

• migration out of bin and into bin fixed by Monte Carlo input assumption;

• Correction factors – a disaster. . . . The data will tend to follow the MC that gave you the correction factors
. . . (Roger Barlow, SLUO Lecture 9 (2000) SLAC
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Soft migration effects Correction factor method (CF)

. . . means: only migration (and acceptance loss), but no shift (bias); high stability = large fraction
of events remaining in same bin is required.

Uncertainties of corrected bin content often determined by
√

bin content, ignoring migration/correlation
effects.
Question: Is the CF method and its uncertainty determination statistically acceptable?

Example: for stability of 90 %, i.e. 90 % of events remain in same bin, the uncertainties increase
by 12 % on average; the correlation coefficient to the next bin is only ρ = −11%. This corresponds
to a measurement with a standard deviation of 0.3 × binwidth.

bin contents error magnification corr. coeff.
standard deviation ⇐⇐ ⇐ central ⇒ ⇒⇒ largest average to next bin

0.30× binwidth 0 % 5 % 90 % 5% 0 % ×1.24 ×1.12 ρ = −11%
0.39× binwidth 0 % 10 % 80 % 10% 0 % ×1.64 ×1.31 ρ = −25%
0.74× binwidth 5 % 20 % 50 % 20% 5 % ×5.00 ×3.24 ρ = −61%
1.00× binwidth 38 % ×7.71

”The purity and stability typically exceed 50 %. If either the purity or the stability is below 25 %
in a bin for the chosen reconstruction method, the bin is combined with an adjacent bin.”(from a
Publication)
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Iterative methods in particle physics

In general there is the attempt (by iterative tuning) to use the “correct” distribution in the MC
simulation, i.e. that distribution that should be extracted from the measured data y ' Ax.

Iterative improvement of a matrix M [k]
x

x[k+1] = M [k]
x y =⇒ x[k+1] =

(
M [k]

x A
)
x but

(
M [k]

x A
)
6= I

“equation” valid only for one solution x

bin-by-bin correction factor: Mx = diagonal, positive elements

other iterative methods: Mx = matrix with non-negative elements

Disadvantage: convergence speed depends on spectrum of singular values (extremely slow for
small singular values) ⇒ unknown regularization strength; no direct error propagation with
matrix Mx possible; correlations unknown, and ignored in bin-by-bin correction method;
questionable statistically and mathematically; applicable only to “correct” for migration
effects, no general unfolding with e.g bias correction in CF method.

Advantage: popular and accepted by collaborations; simple mathematics: no “complicated”
operations like SVD; easy to use.
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5. Results and correlations

(from A. Hoecker and V. Kartvelishvili: NIM A 372)

• Result with 40 data points, almost like
a “band” representing result

• constructed from 10 significant parame-
ters, with 40-by-40 covariance matrix,
singular with rank 10;

• large positive correlations, therefore few
sign-changes of the residuals to MC in-
put distribution.

• (Same) result with 10 data points,
each point represents a bin average of
the result

• 10-by-10 covariance matrix non-
singular, inverse is weight matrix.

• small and negligible correlations.

x

dN
dx

x

dN
dx
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. . . the world of correlations

Average of two correlated numbers d1 and d2 (assuming σ1 = σ2) with positive/negative correlation:

average d = 1
2

(d1 + d2)

V d = 1
2

(1 + ρ12)σ2 V =

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)

ρ12 = +0.95

0 2 4 6
0

2

4

6

8

Averaged value has almost the same error
as each single data value (0.987σ).

ρ12 = −0.95

0 2 4 6
0

2

4

6

8

Averaged value has much smaller error
than each single data value (0.158σ).
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Example for positive correlation

Unfolding of charged multiplicity distribution in ALICE:

Hump observed around Nch = 30± 5 ⇒ new physics?

Charged Multiplicity distribution

Residuals of measured distribution

Small upward fluctuation observed
in ≈ 4 bins around Nch = 20.

Bins of the unfolded distribution are (positively) correlated over a large range. The origin of the
10-bins hump at Nch = 30 is a 4-bin fluctuation at observed Nch = 20.

Note: n = 40 bins are unfolded here from m = 30 measured bins – covariance matrix must have
rank defect > 10.

From: Jan Fiete Grosse-Oetringhaus: Comments on Unfolding Methods in ALICE, PHYSTAT 2011
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6. Unfolding software Comparison of codes

RUN/TRUEE: RUN (Fortran ≈ 1980) by V.B., converted to TRUEE in C++ by Natalie Milke (Uni
Dortmund). Diagonalization. TRUEE manual and code available from
http://app.tu-dortmund.de/TRUEE/

GURU Fortran (≈ 1995), by Andreas Hoecker and Vato Kartvelishveli, rewritten in C++. SVD

TUnfold C++ by Stefan Schmitt, L-curve scan, TUnfoldSys (systematic error propagation, unfolding
with background subtraction)

https://www.wiki.terascale.de/index.php/Statistics_Projects

RooUnfold = ROOT Unfolding Framework, by Tim Adye et al. (includes bin-by-bin, inversion, iterative
methods); partly in Root distribution.

Method RUN/TRUEE GURU Tunfold Iterative

Input: matrix 4 4 4

n-tuple 4

discretization B-Splines hist hist hist

Least squares 4 4 Landweber
MaxLik (Poisson) 4 R-L (D’Ago.)
Orthogonalization 4 4

Cov.mat. by prop. 4 4 4

Dimension in/out 3/1 1/1 multi multi
Regularization 4 4 4 implicit

automatic binning 4

MC re-weighting 4
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7. Future developments

Optimal unfolding by mouse click? Not yet!

Unfolding software requires several ”unfolding parameters”:
e.g. bin sizes, regularization parameter, . . .

• Develop algorithms to determine optimal ”unfolding parameters” automatically;

• repeat unfolding for whole matrix of ”unfolding parameters”, and select set optimal param-
eter set. Which optimality criterium? (option included in TRUEE)

• develop algorithms which avoid ”unfolding parameters”;

• introduce a common interface for several programs
(Unfolding Framework Project in Terascale).
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Unfolding without histograms

Discretization of noisy measurement y and of noisy response matrix A is necessary.

Histograms are not optimal for numerical applications; they
• are discontinuous, and require fixed binning,

• have too much local variability (bins too small), or

• have low resolution (bins too large).

Remember fundamental formula for SVD solution:

solution x̂ =
n∑
j=1

ϕj
σj

cj vj
uj(s) = cos (πjs) j = 0, 1, . . .

The measurement y is represented by coefficients cj = uT
j y or c = UTy y = histogram.

Alternative estimate of pdf: orthogonal series estimator from sample s1, . . . sN :

g(s) =
∞∑
j=0

cjuj(s) cj =

∫ 1

0

g(s)uj(s) ds ⇒ ĉj =
1

N

N∑
i=1

uj(si)

ĉ = UT
DCT y y = 1024-bin histogram

DCT = Discrete cosine transformation, used in modern coding standards like JPEG, MPEG.
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Transformation to Fourier coefficients c

Probability estimate of coefficients from 1024-bin histogram, using special orthogonal series
(similar, not identical to DCT), with automatic recognition of necessary number of coefficients,
and filtering of high-frequency contributions.
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Smoothing by back-transformation

Probability density (red curve), underlying the noisy histogram, is reconstructed from the first 34
terms of an orthogonal series estimation.
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Properties: no bias, no discontinuities, noise and high-frequency components strongly reduced –
no user parameters required.
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Summary

• Simple bin-by-bin correction factor method is accepted by large collaborations for
“soft” migration cases – ignores correlations and tends to follow the MC assumption.

• Regularization methods allow unfolding of difficult data with “indirect” measurements, with
orthogonalization – requires knowledge of statistics and mathematics.

• Use of unfolding software is being simplified by attempts to introduce a common interface
(Unfolding Framework Project) for existing software.

• Work on improved methods, easy to use, with increased stability and robustness, would be
promising.
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Appendix
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Response/acceptance matrix determination . . . by MC simulation

Standard method for the determination of the response matrixA in HEP is Monte Carlo simulation.
Input to the simulation is a certain ”true“ distribution f(x), in the form of a histogram of event
numbers {N1, N2 . . .Nn}. In the simulation an event from bin j is generated, simulated in the
detector and reconstructed/observed in bin i.

Nj = number of events, generated in bin j = 1 . . . n

Nij = number of events, observed in bin i = 1 . . .m, generated in bin j

N0j = number of events, not observed, generated in bin j

Aij =
Nij

Nj
= probability to observe in bin i, if generated in bin j

Equation Ax = y + e (Measured histogram y is m-vector, result histogram x is n-vector,
m ≥ n)

A11x1 + A12x2 + A13x3 + . . . A1nxn = y1 + e1

A21x1 + A22x2 + A23x3 + . . . A2nxn = y2 + e2

A31x1 + A32x2 + A33x3 + . . . A3nxn = y3 + e3

. . .

Am1x1 + Am2x2 + Am3x3 + . . . Amnxn = ym + em

Note that the probabilities Aij do not depend on the MC distribution {N1, N2 . . .Nn}
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Regularized UNfolding by RUN

The program for regularized unfolding:

• Developed in the 1980’s and under conditions of the 1980’s (with punched cards?);

• input are n-tuple files, with additional quantities for detailed checks after unfolding;

• measured distribution can be > 1-dimensional;

• curvature (square of second derivates) is used for regularization;

• use of cubic splines to represent intermediate result without discontinuities; allows to
calculate accurate second derivatives for regularization and finding of optimized bins;

• maximum likelihood fit based on Poisson distribution;

• final result converted to bins (optional with different optimized bin size)

• Test of covariance matrix:

– Generate large number of sets of random measurements from the n-dimensional normal
distribution, using full matrix V x.

– Calculate χ2 for each set, ignoring all off-diagonal elements of V x.

– Convert each χ2 with ndf into the p-value and make histogram of p-values.

Off-diagonal elements can be neglected, if the histogram of p-values is flat.

Now converted to C++.
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