
Interval Estimation

Interval Estimation

The goal of interval estimation is to find an interval which will contain the
true value of the parameter with a given probability.

The meaning of this probability, and hence the meaning of the interval,
will of course be very different for the Bayesian and frequentist methods.

In both methods, the interval with the required probability content will not
generally be unique. Then one must find the best interval with the
specified probability content.

1. Bayesian interval estimation
2. Frequentist interval estimation

a. The Normal Theory Approximation
b. The Exact Method (Neyman)
c. Likelihood-based Methods
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Interval Estimation

Interval Estimation

We may distinguish four different theories of Interval Estimation:

1. Bayesian Theory is based on Bayes’ Theorem, and requires only a
straightforward extension of the Bayesian Theory of Point Estimation.
However, it will cause us to look more carefully at the problem of
Priors.

2. Frequentist Normal Theory, is an asymptotic theory valid when
estimates are approximately Normally distributed, which is very often
the case. Elementary books present only this theory.

3. Exact Frequentist Theory was developed by Jerzy Neyman with the
help of Karl Pearson’s son Egon and a few others around 1930.

4. Likelihood-based Methods, intermediate between 2. and 3., are what
you will probably use most of the time. (You can get these intervals
easily with Minuit.)
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Interval Estimation Bayesian

Interval Estimation - Bayesian

Recall that in the Bayesian method of parameter estimation,
all the knowledge about the parameter(s) is summarized in the
posterior pdf P(θ|data).

To find an interval (θ1, θ2) which contains probability β, one simply has to
find two points such that ∫ θ2

θ1

P(θ|X ) dθ = β.

where β is usually chosen either 0.683 for one-standard-deviation intervals,
or 0.900 for safer intervals. This is the degree of belief that the true value
of θ lies within the interval. The Bayesian interval with probability β is
called a credible interval to distinguish it from its frequentist equivalent,
the confidence interval.
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Interval Estimation Bayesian

Interval Estimation - Bayesian

Since the credible interval of content β is not unique, we can impose an
additional condition, which is usually taken to be one of:

I Accept into the interval the points of highest posterior density
(H.P.D.). [This interval is not invariant under change of variable
θ → θ′.]

I A central interval, such that the integral in each tail is = (1− β)/2.
Central intervals are invariant, but do not produce one-sided intervals
(upper limits) in cases where they are obviously appropriate.

I A one-sided interval, usually an upper limit, when there is reason to
believe that θ is near one end of the allowed region. One-sided
intervals are invariant.
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Interval Estimation Bayesian

Bayesian Intervals for Poisson, Uniform Prior

Bayesian
Posterior
for Poisson,
Nobs = 0, 1, 2, 3,
Uniform Prior

0 1 2 3 4 5 6 7 8 9 10

N=1

N=0
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Interval Estimation Bayesian

Bayesian Intervals – The Physical Region

One of the most attractive features of the Bayesian method:
Since the Prior is always zero in the non-physical region,
the entire credible interval is necessarily in the allowed region.

But the negative side of this property is:
A measurement near the edge of the physical region will always be biased
toward the interior of the physical region.

This is to be expected, since the credible interval represents belief,
but it means that we lose the information about what comes from the
actual measurement and what comes from the prior.
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Interval Estimation Bayesian

Background in Poisson Processes

We may distinguish different cases:

1. The background expectation is exactly known.
I Observe 10 events.

Expect 3 bgd.
I Observe 0 events.

Expect 3 bgd.

2. The background expectation is measured with some uncertainty.
(“side-bands”, or “signal off”.)
example: b = 3.1± 1.2
In this case, b is a nuisance parameter.
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Interval Estimation Bayesian

Bayesian Intervals: Poisson with Known Background

Bayesian
Posterior
for Poisson,
Nobs = 3,
Uniform Prior

0 1 2 3 4 5 6 7 8 9 10

bg=0

bg=3.5

0 1 2 3 4 5 6 7 8 9 10
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Interval Estimation Bayesian

Bayesian Intervals: Poisson with Estimated Background

In the Bayesian framework, everything has its probability distribution,
including of course nuisance parameters. The distribution of background is
some pdf P(b).

Therefore, in calculating the posterior pdf,
one simply integrates over all nuisance parameters:

P(µ|data) =

∫
b

P(data |µ+b)P(µ)

P(data)
P(b)db

This may be very heavy numerically, but it is conceptually easy.
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Interval Estimation Bayesian

Bayesian Intervals: Poisson with Known Background

Bayesian 90% Upper Limits (Uniform Prior)
observed = 0 1 2 3

background = 0.0 2.30 3.89 5.32 6.68

0.5 2.30 3.50 4.83 6.17

1.0 2.30 3.26 4.44 5.71

2.0 2.30 3.00 3.87 4.92

3.0 2.30 2.83 3.52 4.37

The uniform prior gives very reasonable upper limits for Poisson
observations, with or without background.

However, the Uniform Prior U(x) cannot represent belief, because∫ b

a
U(µ) dµ = 0 for all finite a,b
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Interval Estimation Bayesian

Bayesian Intervals: Non-Uniform Priors

So let us try the famous Jeffreys Priors.

Jeffreys Priors were derived in order to be
invariant under certain coordinate transformations.
The 1/µ Jeffreys Prior is scale-invariant.
It could represent belief, since it goes to zero at infinity.
We have used it earlier in Bayesian Point Estimation.

Bayesian 90% Upper Limits (1/µ Jeffreys Prior)
observed = 0 1 2 3

background = 0.0 0.00 2.30 3.89 5.32

0.5 0.00 0.00 0.00 0.00

1.0 0.00 0.00 0.00 0.00

2.0 0.00 0.00 0.00 0.00

3.0 0.00 0.00 0.00 0.00
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Interval Estimation Bayesian

Bayesian Intervals with Jeffreys Priors

Can Jeffreys Priors be saved?

For parameters µ, 0 ≤ µ ≤ ∞, there is another Jeffreys Prior,

P(µ) = 1/
√
µ

which minimizes the Fisher information contained in the prior.
Unfortunately, this very good idea doesn’t solve the problem seen on the
previous slide. The divergences (the zero upper limits) remain.

The prior that gives the desired Poisson intervals in the presence of
background is

P(µ) = 1/
√
µ+ b

where b is the expected background. This means that the prior for µ
depends on b, which is completely crazy.
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Interval Estimation Bayesian

Combining Bayesian Intervals

In the Bayesian system, both point estimates and interval estimates may
be highly biased, so it would seem impossible to combine the estimates
from different experiments to produce a “world average”, and indeed it is.

However, the Bayesian framework offers an elegant way to combine results
from several experiments by extending Bayes’ Rule:

Posterior pdf(µ) =
L1(µ)× L2(µ)× L3(µ)× Prior pdf(µ)

normalization factor

where Li (µ) is the likelihood function from the ith experiment.

To get the Posterior, you may use as many likelihoods as you want, but
you must use one and only one Prior. [The Ur-Prior.]
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Interval Estimation Frequentist

Interval Estimation - Frequentist

The Problem: Given β, find the optimal range [θa, θb] in θ-space such that:

P(θa ≤ θtrue ≤ θb) = β .

The interval (θa, θb) is then called a confidence interval.
A method which yields intervals (θa, θb) satisfying the above equation is
said to possess the property of coverage.

Note that the random variables in this equation are (θa, θb), not θtrue.

Formally, if an interval does not possess the property of coverage,
it is not a confidence interval, although we will consider sometimes
approximate confidence intervals, which have only approximate coverage.

Overcoverage occurs when P > β.
Undercoverage occurs when P < β.
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Interval Estimation Frequentist - Normal Theory

Normal Theory Interval Estimation
Suppose we are sampling X from the Gaussian N(µ, σ2).
When µ and σ2 are known, we can evaluate:

β = P(a ≤ X ≤ b) =

∫ b

a
N(µ, σ2)dX

When µ is unknown, one can no longer calculate the probability content of
the interval [a, b]. Instead, one calculates the probability β that X lies in
some interval relative to its unknown mean, say [µ+ c, µ+ d ]. Letting
Y = (X ′ − µ)/σ, we have:

β = P(µ+ c ≤ X ≤ µ+ d) =

∫ µ+d

µ+c
N(µ, σ2)dX ′

=

∫ d/σ

c/σ

1√
2π

exp

[
− 1

2
Y 2

]
dY

Now re-arrange the inequalities inside the probability to obtain:

β = P(X−d ≤ µ ≤ X−c) .
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Interval Estimation Frequentist - Normal Theory

Normal Theory Interval Estimation

The above magic works because:

I The data were Normally distributed, and the Normal pdf is symmetric
in X and µ, being a function only of (X − µ)2.

I It was tacitly assumed that one could always integrate in both
variables as far as we want in both directions. That means we
encounter no physical boundaries.

According to the theory of Point Estimation, both of the above should be
true asymptotically for the usual estimators:

maximum likelihood and least squares.

Therefore we already have
an asymptotic theory of interval estimation.

We shall see that the extension to many variables is straightforward.
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Interval Estimation Frequentist - Normal Theory

Normal Theory Interval Estimation
Given a random variable X with p.d.f. f (X ) and cumulative distribution
F (X ), the α-point Xα is defined by∫ Xα

−∞
f (X )dX = F (Xα) = α .

In terms of α-points, the interval [c , d ] is obviously [Zα,Zα+β] .

0

β

α 1− β − α

c = Zα d = Zβ+α

N(0, 1) with regions of probability content α, β, and 1 − β − α. c is the α-point and d
the (α + β)-point.
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Interval Estimation Frequentist - Normal Theory

Normal Theory Interval Estimation

Clearly for a given value of β, there are many possible intervals,
corresponding to different values of α. The most usual choice is
α = (1− β)/2 , which gives the central interval, symmetric about zero.

Example: Central Intervals for N(0,1).

β = (1− α)/2 Zα Zα+β
0.6827 -1.00 1.00
0.9000 -1.65 1.65
0.9500 -1.96 1.96
0.9545 -2.00 2.00
0.9900 -2.58 2.58
0.9973 -3.00 3.00
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Interval Estimation Frequentist - Normal Theory

Normal Theory Intervals in Many Variables
In more than one dimension, the Normal pdf becomes:

f (t|θ) =
1

(2π)N/2| ∼V |1/2
exp

[
− 1

2
(t− θ)T ∼V

−1 (t− θ)

]
.

It follows from the Normality of the t that the covariance form

Q(t,θ) = (t− θ)T ∼V
−1 (t− θ)

has a χ2(N) distribution. This means that the distribution of Q is
independent of θ, and we have

P[Q(t,θ) ≤ K 2
β ] = β

where K 2
β is the β-point of the χ2(N) distribution.

Then the confidence interval becomes a confidence region in t-space with
probability content β, defined by Q(t,θ) ≤ K 2

β .
Q is a hyperellipsoid of constant probability density for the Normal pdf.
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Interval Estimation Frequentist - Normal Theory

Normal Theory Intervals in Two Variables

For two Normally-distributed variables with covariance matrix

∼V =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)
,

the elliptical confidence
region of probability con-
tent β will look like this:

t1

t2

Kβσ1Kβρσ1

Kβσ1
√

1− ρ2

Kβσ2

Kβσ2
√
1− ρ2

Kβρσ2

Shown here is the case ρ = 0.5.
If ρ is negative, the major axis of the ellipse has a slope of −1.
If ρ = 0, the axes of the ellipse coincide with the coordinate axes.
If ρ = 1, the ellipse degenerates to a diagonal line.
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Interval Estimation Frequentist - Normal Theory

Normal Theory Intervals in Two Variables

t1

θ10 − σ1 (θ10, θ20) θ10 + σ1

t2

θ20 − σ2

θ20 + σ2

β1

β2

β3

Confidence regions for the Normal estimators t1, t2, with Kβ = 1, ρ = 0.5. The
probability content is β1 for the elliptic regions, β2 for the circumscribed rectangle, and
β3 for the infinite horizontal band.
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Interval Estimation Frequentist - Normal Theory

Normal Theory Intervals in Two Variables

We give below the probability contents of the three regions for different
values of Kβ and the correlation ρ, for two Gaussian-distributed variables.
For the inner ellipse (region 1) and the infinite band (region 3), the
probability content β does not depend on ρ.

Kβ = 1 Kβ = 2 Kβ = 3

inner ellipse β1 0.393 0.865 0.989

square β2 for ρ = 0.00 0.466 0.911 0.995
for ρ = 0.50 0.498 0.917 0.995
for ρ = 0.80 0.561 0.929 0.996
for ρ = 0.90 0.596 0.936 0.996
for ρ = 0.95 0.622 0.941 0.996
for ρ = 1.00 0.683 0.954 0.997

infinite band β3 0.683 0.954 0.997
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Interval Estimation Frequentist - Normal Theory

Exact Frequentist Intervals for the general case
Fisher got as far as the Normal Theory intervals, but his attempt to solve
the general case produced the so-called fiducial intervals which were
essentially Bayesian (just what he was trying to avoid).

Meanwhile Jerzy Neyman, a young Polish mathematician born in imperial
Russia, had finished his studies in the Ukraine, and decided to go to
London to work on statistics with Karl Pearson, discoverer of the
Chi-square Test.

He was disappointed to find that Pearson did not know modern
mathematics, but his son Egon Pearson did.
Neyman and Egon Pearson collaborated very fruitfully, producing two
major contributions to statistics:

I The Neyman construction of confidence intervals presented here, and

I The Neyman-Pearson Test, to be treated later under Tests of
Hypotheses.
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Interval Estimation Exact Frequentist

Exact Frequentist Intervals
The first important step in finding an exact theory was to work in the right
space: P(data|hypothesis), with one axis (or set of axes) for data, and
another for hypotheses.

Trying to plot “true values” and “measured values” on the same axis is
not a good approach, since hypotheses and data live in different spaces.

Bayesian Parenthesis:

page 81 of O’Hagan,
”Bayesian Inference”
shows how Bayesians
plot different kinds of
functions on the same
axes
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Interval Estimation Exact Frequentist

The Neyman Construction
The confidence belt is constructed horizontally in the space of P(t|θ).

data t

p
ar
am

et
er
θ

t 1
(θ
)

t 2
(θ
)

t1(θ1)

t2(θ1)

θ0

θ1

θ2

t1(θ) and t2(θ) are such that: P(t1 < data < t2) = β
where β is usually chosen to be 0.683 or 0.900.
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Interval Estimation Exact Frequentist

The Neyman Construction 2
The two curves of t(θ) are re-labelled as θ(t), and
the confidence limit is read vertically.

data tobserved

t0

p
a
ra
m
et
er
θ

θ
U (t

)

θ L
(t
)

θL(t0)

θU (t0)

For observed data t0, the confidence interval is (θL(t0), θU(t0)).

I now claim that P(θL < θtrue < θU) = β
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Interval Estimation Exact Frequentist

The Neyman Construction 2
The two curves of t(θ) are re-labelled as θ(t), and
the confidence limit is read vertically.
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Interval Estimation Exact Frequentist

The Neyman Construction 3
Suppose the true value is θ0. Then, depending on the observed data,
we could get the intervals indicated as red and green vertical lines below:

data t

p
ar
am

et
er
θ

t 1
(θ
)

t 2
(θ
)

θ0

Only the green confidence intervals cover the true value.
The probability of getting a green confidence interval is β.
By construction, for any value θ0, P(θL < θ0 < θU) = β.
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Interval Estimation Exact Frequentist

Upper limits and Central Intervals

When the parameter cannot be negative but is very close to zero, one
often reports an Upper limit rather than a two-sided interval.

Confidence belts for a
Gaussian measurement
(µ unknown, σ = 1).

The solid lines delimit
the central 90% confi-
dence belt, the dashed
line the 90% upper
limit.

measured mean x

m
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n
µ

2

3

4

5

6

-2 -1 0 1 2 3 4 5 6

0.9 central

0.9 upper limit
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Interval Estimation Exact Frequentist

Flip-flopping and Empty Intervals

empty intervals
down here −→

measured mean x

m
ea
n
µ

2

3

4

5

6

-2 -1 0 1 2 3 4 5 6

A
CB

Flip-flopping for a Gaussian measurement. The shaded area represents the
effective confidence belt resulting from choosing to report an upper limit
only when the measurement is less than 3σ above zero. This effective belt
undercovers for 1.2 < µ < 4.3, for example at µ = 2.5 where the intervals
AC and B∞ each contain 90% probability but BC contains only 85%.
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Interval Estimation Exact Frequentist

The Unified Approach (Feldman-Cousins)
The elegant way to solve all the problems (flip-flopping and empty
intervals) would be to find an ordering principle which automatically gives
intervals with the desired properties.

Inspired by an important result in hypothesis testing
which we will see in the next chapter,

Feldman and Cousins proposed the
likelihood ratio ordering principle:

see Feldman and Cousins, Unified Approach ...
Phys. Rev. D 57 (1998) 3873

When determining the interval for µ = µ0, include the elements of
probability P(x |µ0) which have the largest values of the likelihood ratio

R(x) =
P(x |µ0)

P(x |µ̂)
,

where µ̂ is the value of µ for which the likelihood P(x |µ) is maximized
within the physical region.
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Interval Estimation Exact Frequentist

The Unified Approach (Feldman-Cousins)

measured mean x

m
ea
n
µ

2

3

4

-2 -1 0 1 2 3 4

F-C

F-C

Belts of 90% confidence for a Gaussian measurement showing the effect of using
different ordering principles. The Feldman-Cousins belt is labelled “F-C”, and the
straight lines give central intervals. The red line is the M.L. solution
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Interval Estimation Exact Frequentist

Confidence Intervals for Multidimensional Data

In the 1937 paper in which
Neyman described his con-
struction, he used two di-
mensions for the data (and
the third dimension for the
parameter θ).

Now the interval in t be-
comes a 2-d region in data
space containing probability
β. And the determination of
the confidence interval re-
quires finding all the values
of θ for which the observed
data lies inside this region.
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Interval Estimation Exact Frequentist

Confidence Intervals for Discrete Data

In the Neyman construction, we have so far assumed that it would always
be possible to accumulate exactly probability β within the confidence band,
but this happens only when the data t are continuous. When the data are
discrete, which will be the case for Poisson- and binomial-distributed data
for example, we must replace the continuous t with discrete ti , the integral
becomes a summation, and unfortunately the equals sign must also go:

continuous data discrete data∫ t2

t1

f (t|θ)dt = β →
U∑
i=L

P(ti |θ) ≥ β .

Clopper and Pearson [Biometrika 34 (1934) 404]
showed how to do this for the binomial distribution.
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Interval Estimation Exact Frequentist

Clopper-Pearson Intervals for Binomial Data

This diagram from the
1934 paper of Clopper and
(Egon) Pearson shows the
construction of 95% confi-
dence limits for the binomial
parameter with N = 10.

The data can take on only
11 discrete values, so the
confidence belt takes the
form of steps. It is impor-
tant to join the inner edges
of the steps in a smooth
curve (as they do here) be-
cause these are the points
that determine the confi-
dence interval.
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Interval Estimation Exact Frequentist

Coverage of Neyman Upper Limits for Poisson Data
The confidence band for Poisson upper limits will be in the form of steps,
as with the Clopper-Pearson confidence band shown above.

Naive Frequentist 90% Upper Limits for Poisson with Background
events observed = 0 1 2 3

upper limit = 2.30 3.89 5.32 6.68

Dinosaur Plot
If the true value of µ is
less than 2.30, the cov-
erage will be 100 % be-
cause the upper limit
cannot be less than
2.30.
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Feldman-Cousins Intervals for Poisson Data with bgd

The Feldman-Cousins unified approach has had its greatest success when
applied to Poisson data, where all previously used methods had some
undesirable properties.

For all details of this method, the original publication
Feldman and Cousins, Unified Approach ... Phys. Rev. D 57 (1998) 3873
is recommended since it explains clearly how to use it to solve all the most
common problems.

There is also an excellent set of slides available from Gary Feldman’s
website called Journeys of an Accidental Statistician.
The following slide is taken from Journeys.
It explains how the unified approach is applied to the problem of Poisson
with background to determine the edges of the confidence belt for µ = 0.5
and b = 3.0.
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Gary Feldman 8 Journeys

The Solution

For both the upper limit and central limit, x = 0 excludes
the whole plane.  But consider the problem from the point
of view of the data.  If one measures no events, then clearly
the most likely value of µ is zero.  Why should one rule out
the most likely scenario?

Therefore, we propose a new ordering principle based on
the ratio of a given µ to the most likely µ, ˆ µ :

R =
P(x | µ)
P(x | ˆ µ )

Example for µ = 0.5 and b = 3:

x P(x|µ) ˆ µ P(x| ˆ µ ) R rank U.L. C.L.

0 0.030 0.0 0.050 0.607 6 •

1 0.106 0.0 0.149 0.708 5 • • •

2 0.185 0.0 0.224 0.826 3 • • •

3 0.216 0.0 0.224 0.963 2 • • •

4 0.189 1.0 0.195 0.966 1 • • •

5 0.132 2.0 0.175 0.753 4 • • •

6 0.077 3.0 0.161 0.480 7 • • •

7 0.039 4.0 0.149 0.259 • •

8 0.017 5.0 0.140 0.121 •
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Feldman-Cousins coverage for Poisson, no background
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Frequentist Upper Limits for Poisson data

Naive Frequentist 90% Upper Limits for Poisson with Background
observed = 0 1 2 3

background = 0.0 2.30 3.89 5.32 6.68

0.5 1.80 3.39 4.82 6.18

1.0 1.30 2.89 4.32 5.58

2.0 0.30 1.89 3.32 4.68

3.0 -0.70 0.89 2.32 3.68

Feldman-Cousins 90% Upper Limits for Poisson with Background
observed = 0 1 2 3

background = 0.0 2.44

0.5 1.94 3.86

1.0 1.61 3.36 4.91

2.0 1.26 2.53 3.91 5.42

3.0 1.08 1.88 3.04 4.42
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The Unified Approach of Feldman and Cousins

The Unified Approach solves the major problems that we knew we had
(empty intervals) and we didn’t know we had (flip-flopping)
in the framework of the classical Neyman construction
by using an equally classical result from hypothesis testing
(the Neyman-Pearson lemma, coming soon in this course).

Some other aspects also covered in the paper:

I Application to more complicated problems with two parameters.

I How to measure the sensitivity of the experiment.

And an important aspect not covered in the paper, but since resolved by
Feldman:

I The inclusion of nuisance parameters, such as unknown background.
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Interval Estimation Exact Frequentist

Unified Approach with 2 parameters

Feldman and Cousins show in their paper how to apply their method to
the problem of neutrino oscillations with 2 parameters: sin2(2θ) and ∆m2.
They also compare their method with other commonly used methods,
and show the Unified Approach gives both tighter limits and correct
coverage.

However, it is clear that as the complications increase, this method
becomes very hard to use. I haven’t seen it applied to three parameters.

Compare with the Bayesian method: With two or more parameters, there
is no guarantee that Bayesian estimates are even consistent.
Multidimensional priors pose a great problem, and tend to dominate the
data, contrary to the usual assumption that the prior can be made
“uninformative”.
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Interval Estimation Exact Frequentist

The Confidence Interval as a Measure of Sensitivity

We often use the size of the reported “errors” as a measure how good
(sensitive) the experiment is. An experiment that reports smaller errors is
supposed to be a better experiment.

However, in situations near a physical limit, it is possible to obtain a
smaller interval estimate simply by “good luck”: for example, observing
fewer events than were expected from backgreound alone.
This can happen also in the Unified Approach.
Therefore, Feldman and Cousins propose an additional sensitivity measure:

The Feldman-Cousins sensitivity of the measurement of a small signal is
the average upper limit that would be obtained by an ensemble of
experiments with the expected background and no true signal.

It can be calculated beforehand since it is independent of the data
observed.
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Interval Estimation Exact Frequentist

Nuisance Parameters in the Unified Approach

It is known that in the Neyman construction, adding more parameters,
even nuisance parameters in which we are not interested, is clumsy and
always leads to overcoverage, since we require coverage for every possible
value of the nuisance parameters.

At the time of their 1998 paper, Feldman had already found an elegant
approximate solution to the problem of nuisance parameters, but it was
not published because of one important detail that was not understood:
The results did not tend to the expected limit as the uncertainty in the
nuisance parameter approached zero.

This turns out to be a special feature of the Poisson problem which is now
understood, so the method seems to be correct.
It is not yet published, but is available on the Web in a presentation
Journeys of an Accidental Statistician [Google:feldman journeys]
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Gary Feldman 14 Journeys

Trick for Including Errors on Backgrounds

If one provides coverage for the “worst case” of the
nuisance parameter, then perhaps one will have provided
coverage for all possible values of the nuisance parameter.

Let µ = unknown true value of the signal parameter
β = unknown true value of the background parameter

x = measurement of µ + β
b = measurement of β in the ancillary experiment

The rank R becomes

R µ, x,b( ) =
P(x | µ + ˆ ˆ β ) P (b | ˆ ˆ β )
P(x | ˆ µ + ˆ β ) P (b | ˆ β )

,

where

ˆ µ and ˆ β  maximize the denominator (as usual), and

ˆ ˆ β  maximizes the numerator.

Since R is only a function of µ and the data, one proceeds
to construct the confidence belt as before.



Gary Feldman 15 Journeys

 Examples and Test of the Trick

Let x be a Poisson measurement of µ + β and

b be a Poisson measurement of β/r in an ancillary
experiment (i.e., r = signal region/control region),

r / n, rb 0, 3 3, 3 6, 3 9, 3

0.0 0.00-  1.08 0.00-  4.42 0.15-  8.47 1.88-12.30

0.5 0.00-  1.11 0.00-  4.42 0.00-  8.47 1.75-12.30

1.0 0.00-  1.49 0.00-  4.73 0.00-  8.70 1.32-12.55

3.0 0.00-  1.57 0.00-  4.85 0.00-  9.36 0.00-13.03

A test of coverage for r = 1.0, 0 ≤ µ ≤ 20, 0 ≤ β ≤ 15 at
10,000 randomly picked values of µ and β:

Median coverage: 90.25%

Fraction that undercovered:   4.10%

Median coverage for those that
undercovered:

89.96%

Worst undercoverage: 89.46%

Comment from Harvard statisticians:  “We have never seen
a statistical approximation work this well.”



Gary Feldman 25 Journeys

Visit to Harvard Statistics Department

Towards the end of this work, I decided to try it out on
some professional statisticians whom I know at Harvard.

They told me that this was the standard method of
constructing a confidence interval!

I asked them if they could point to a single reference of
anyone using this method before, and they could not.

They explained that in statistical theory there is a one-to-
one correspondence between a hypothesis test and a
confidence interval.  (The confidence interval is a
hypothesis test for each value in the interval.)   The
Neyman-Pearson Theorem states that the likelihood ratio
gives the most powerful hypothesis test.  Therefore, it must
be the standard method of constructing a confidence
interval.

I decided to start reading about hypothesis testing…



Interval Estimation Frequentist - Likelihood-based

Recall the Normal Theory of Interval Estimation

0

β

α 1− β − α

c = Zα d = Zβ+α

N(0, 1) with regions of probability content α, β, and 1 − β − α. c is the α-point and d
the (α + β)-point.

In the Normal Theory, we showed how to convert the above pdf into a
likelihood function by exchanging X and θ. Now if we take the logarithm
of the above likelihood function, the Gaussian becomes a parabola as on
the next slide.
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Interval Estimation Frequentist - Likelihood-based

Likelihood-based Confidence Intervals

µXX − σ X + σX − 2σ X + 2σ

−1/2

−2

lnL

Log-likelihood function for Gaussian X , distributed N(µ, σ2).
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Interval Estimation Frequentist - Likelihood-based

Likelihood-based Confidence Intervals
When the data are Gaussian-distributed, the Normal Theory applies and
confidence intervals can be calculated easily without the Neyman
construction. In this case, the log-likelihood has a parabolic shape.

Let us now assume the inverse: that a parabolic log-likelihood function
implies that the Normal Theory is applicable.

But if the log-likelihood is not parabolic, it can always (almost always) be
transformed to a parabola by a (non-linear) transformation of the
parameter µ.

But, since the values of the likelihood function are invariant, it is not
necessary to find the transformation that would make it Gaussian.

One only has to read off the parameter values for which
ln L = ln Lmax − 1/2 (for the one-sigma confidence interval).
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Likelihood-based Confidence Intervals

Non-parabolic
log-likelihood

θU , θL are
invariant

θθ̂

θL θU

−1/2

−2

lnLθ

lnL
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Interval Estimation Frequentist - Likelihood-based

Likelihood-based Confidence Intervals

This method was suggested by a statistician working at CERN
(D. Hudson) in 1964, and we included it already in the early versions of
Minuit (1966). At the time, the properties of the method were known only
for a few simple (one-parameter) problems.

Physicists know this as the method of MINOS, since that is the Minuit
command that calculates this confidence interval. Much later, statisticians
started to study it for the multiparameter case (which they called profile
likelihood). It turns out to have surprisingly good coverage.

We knew it did not have good coverage for the simplest problem (Poisson
with very few events and no background), but we thought it should be
good for other problems.
It turns out to have excellent coverage for large numbers of parameters, so
it is good for handling nuisance parameters.
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Likelihood-based Confidence Intervals

θ
θ̂

θ1 θ2 θ3 θ4

lnL

“Pathological” log-likelihood function.
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Interval Estimation Frequentist - Likelihood-based

Likelihood-based Confidence Intervals

The Minuit command MINOS finds the intersection of the likelihood
function with the value ln Lmax − 1/2 . This gives in general an
asymmetric confidence interval, whereas the Normal Theory always gives
an interval symmetric about the M.L. estimate.

When there are several parameters, the MINOS error on the kth

parameter is found by looking at the function g :

g(xk) = max
xi ,i 6=k

ln L(X)

and finding the two points where g(xk) = ln Lmax − 1/2 .
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Likelihood-based Confidence Intervals

lnL = lnL(θ̂)− 1/2

lnL = lnL(θ̂)− 2

θ1

θ2

θ̂

θL1

θU1

θL2

θU2

Log-likelihood contours in two variables for non-linear problem.
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Interval Estimation Summary

Measurements outside the physically allowed region.

Suppose one measures the neutrino mass squared by estimating E 2 and p2

and subtracting. Assume that the measurements E 2 and p2 are
Gaussian-distributed. Suppose also that m2 ≈ 0.

If such an experiment is repeated many times, one would expect half the
measurements of m2 to be negative. What should the unlucky
experimenter report?

1. Using the methods of frequentist point estimation and
neglecting the unphysicalness, one would report the
unbiassed estimate, even if it is negative, and the standard
deviation of the estimate. This result can be averaged with
others, and also is a good measure of the sensitivity of the
experiment.
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Interval Estimation Summary

Measurements outside the physically allowed region.

2. Using the methods of frequentist interval estimation one
would report the Feldman-Cousins upper limit, which is
always physical and has correct coverage, but cannot be used
for averaging or measuring sensitivity.

3. Using Bayesian theory, one would report the Bayesian
posterior or some interval obtained from it, which is always
physical but depends on arbitrary choices including the prior.
It cannot be used for averaging and does not in general have
frequentist coverage.

4. Reporting the likelihood function is often proposed as the
universal solution, but it is not really defined outside the
physical region.
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