B-tagging with Machine Learning at a 10 TeV Muon Collider

Jeffrey Backus
Princeton University
10/03/25

Overview

- Goal: Train a neural network to discriminate between b-jets, c-jets and light (u, d, s, gluon) jets at a 10 TeV muon collider
- Using dijet samples located at /ospool/uc-shared/project/ futurecolliders/data/fmeloni/DataMuC_MAIA_v0/v5/reco/ dijet_mjj_10000
- Having some problems running my feature extractor for long periods of time on the cluster
- Only was able to analyze 1k jets for today

- 1. Invariant mass of the jet (jet_mass) in GeV
- 2. Number of constituents (nconst)
- 3. Number of charged constituents (n_charged)
- 4. Fraction of jet pT carried by charged constituents (frac_ch) in GeV
- 5. Fraction of jet pT carried by neutral constituents (frac_neu) in GeV
- 6. Fraction of jet pT carried by leading particle (leading_frac) in GeV
- 7. Largest angular distance between constituents (max_dR) in rads

8. Radial moment of constituents in jet (girth) in GeV:

$$\frac{\sum_{i} p_{T,i} \Delta R_{i}}{p_{T}^{\text{jet}}}$$

 ΔR_i = angular distance of constituent from jet axis.

9. Jet pT dispersion (pTD) in GeV:

$$\frac{\sqrt{\sum_{i} p_{T,i}^2}}{\sum_{i} p_{T,i}}$$

Soft lepton features

- 10. Number of soft leptons in the jet (n_softlep)
- 11. pT of highest-pT lepton relative to jet axis (softlep_ptrel) in GeV
- 12. Lepton pT fraction of the highest-pT lepton (softlep_z)
- 13. Distance of highest-pT lepton to jet axis (softlep_dR) in rads

Impact parameter features

- 10. Max IP (d0_max and z0_max) in mm
- 11. Mean IP (d0_mean and z0_mean) in mm
- 12. Median IP (d0_med and z0_med) in mm
- 13. IP significance max (d0sig_max and z0sig_max)
- 14. IP significance mean (d0sig_mean and z0sig_mean)
- 15. IP significance median (d0sig_med and z0sig_med)

$$sig = \frac{IP}{\sigma(IP)}$$

Light jets Feature Plots

Light jet Feature Plots

For light jets

No soft leptons in light jets => no soft lepton plots

Light jet Feature Plots

For light jets

150

d0sig_max

300

Light jet Feature Plots

For light jets

Neural Network Design

- Simple setup: Fully-connected MLP with three hidden layers
- BatchNorm + ReLU + Dropout after each hidden layer
- Features are standardized during pre-processing
- Outputs three logits: {b, c, light}
- O(10k) parameters
- Loss measured in cross-entropy
- Re-weights by pT so the model learns flavor, not kinematics
- Training on $\mu\mu\to bb$, $\mu\mu\to cc$, $\mu\mu\to ll$ (each 100k) Pythia samples

Results

- Running on test set, using a b-score threshold of 0.25:

Results

- Now using 0.30:

Next Steps

- Analyze more samples
 - Should be straightforward once I figure out why cluster keeps kicking me
- Train on neural network