

Charged Pion Identification

Ethan Martinez

MAIA Detector Tau Studies

September 25, 2025

Overview

- Motivation
- Comparing Electrons & Charged Pions
- Conclusions & Next Steps

Motivation

- <u>Electron studies</u> by Jullian Watts (University of Tennessee-Knoxville) uncovered poor electron/charged PFO identification using out-of-the-box Pandora
- My studies of 1P0N and 3P0N tau reconstruction demonstrated that losses in efficiency at low- p_T in the central/transition regions were due to a higher frequency of charged pions misidentified as electrons
- <u>Electron rejection studies</u> by Moses confirmed that Pandora's charged PFO identification is extremely poor (~50% of pions misidentified as electrons)
- To boost tau reconstruction efficiencies, we must create a custom charged particle ID processor that runs over charged PFOs output from Pandora reconstruction and feeds re-identified charged PFOs into TauFinder. Identification should be based on sub-detector energies and depth of clusters.

Electromagnetic Energy Fraction

- Consistent with what Kevin and Moses have shown
- Note that charged pions and electrons in distribution are labeled based on Pandora identification
- Not necessarily true that cutting at $\frac{E_{ECAL}}{E_{TOT}} > 0.99$ reduces number of charged pions by ~20%
- Need to update distribution with truth-matching-based labels

Centroid Radius

- Clearly, we have a charged pion if $R_{centroid} > 3100 \ mm$
- However, charged pions and electrons in distribution are labeled based on Pandora identification
- Bimodality in electron distribution implies that rightmost peak contains pions misidentified as electrons
- Realistically, any $R_{centroid} > 2350 \ mm$ could be identified as a charged pion
- To verify above claim, need to recreate distribution with truth-matching-based labels
- Plan to convert $R_{centroid} \rightarrow Innermost\ Layer$ in the future

Conclusions and Next Steps

- Need to create custom charged PFO identification processor to feed re-identified charged PFOs into TauFinder
- Electromagnetic energy fraction and centroid radius prove to be promising variables to distinguish electrons and charged pions
- Need to recreate distributions with truth-matching-based labels to accurately represent where thresholds should be placed
- Plan to look at these distributions as a function of polar angle θ to understand variability of these variables in the MAIA detector due to the solenoid
- Will start implementing these selections into the charged PFO identification processor