CLIC accelerator complex (2012)

Fig. 2.1: CLIC layout at 3 TeV

CLIC accelerator complex (2018)

Figure 16: Schematic layout of the CLIC complex at 3 TeV. (image credit: CLIC)

CLIC accelerator complex (380GeV)

0.2 GeV

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	2.3	3.7	5.9
Lum. above 99 % of \sqrt{s}	$1{\times}10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$ m fb^{-1}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim \! 60/1.5$	$\sim \! 40/1$
Final RMS energy spread	%	0.35	$0.35^{'}$	$0.35^{'}$
Crossing angle (at IP)	mrad	16.5	20	20

CLIC versus ILC and NLC parameters driving the damping ring design

Creation of ultra-low emittance beams

Parameters [units]	ILC	NLC	CLIC
Bunch population [10 ⁹]	20	7.5	4.1
Bunch spacing [ns]	369	1.4	0.5
Number of bunches/train	2625	192	312
Number of trains	1	3	1
Repetition rate [Hz]	5	120	50
Horizontal normalized emittance [nm]	4400	2400	500
Vertical normalized emittance [nm]	20	30	5
Longitudinal normalized emittance [keV.m]	38	11	6

Beam parameters at the exit of the low energy linac and before injection to the pre-damping rings

Injected parameters	e -	\mathbf{e}^+
Bunch population [10 ⁹]	4.3	6.6
r.m.s. Bunch length [mm]	4	5.4
r.m.s. Energy spread [%]	1	4.5
Hor., Ver. Norm. emittance [nm]	100×10^{3}	7×10^{6}

CLIC pre-damping ring

Parameters	Injected		Extracted
	e^{-}	e^+	
Bunch population [10 ⁹]	4.3	4.3	4.3
r.m.s. bunch length [mm]	4	5.4	10
r.m.s. energy spread [%]	1	0.6	0.5
Long. emittance [keV.m]	114	93	143
Hor. Norm. emittance $[\mu m]$	100	7×10^{3}	63
Ver. Norm. emittance $[\mu m]$	100	7×10^3	1.5

Parameter, Symbol [Unit]	2 GHz	1 GHz	
Energy, E [GeV]	2.86		
Circumference, C [m]	389.15		
Bunch population, N [10 9]	4.3		
Basic cell type in the arc/LSS	TME/	TME/FODO	
Number of dipoles, $N_{\rm d}$	3	8	
Dipole Field, B_0 [T]	1	.2	
Horizontal and vertical tune, (Q_x,Q_y)	(16.39	,12.26)	
Horizontal and vertical chromaticity, (ξ_x, ξ_y)	(-19.0	,-22.9)	
Number of wigglers, $N_{\rm w}$	3	6	
Wiggler peak field, $B_{\rm w}$ [T]	1	.9	
Wiggler length, $L_{\rm w}$ [m]		3	
Wiggler period, $\lambda_{\rm w}$ [cm]	30		
Norm. equil. horizontal emittance, $\gamma \varepsilon_{x0}[\mu m]$	54		
Hor., vert. and long. damping time, (τ_x, τ_y, τ_l) [ms]	(2.7,2.7,1.35)		
Momentum compaction factor, $\alpha_c [10^{-3}]$ 3.7		.7	
Energy loss/turn, U [MeV]	U [MeV] 2.8		
Equil. energy spread (r.m.s.), σ_{δ} [%]	0.1		
RF Voltage, V_{RF} [MV]	10		
Synchrotron tune, Q_s	0.071	0.051	
Bunches per train, n_b	312	156	
Bunch spacing, τ_b [ns]	0.5	1	
RF acceptance, ε_{RF} [%]	1.2	1.7	
Harmonic number, h	2596	1298	
Equil. bunch length (r.m.s.), σ_s [mm]	3.2	4.6	

CLIC main damping ring

> Challenges

- Intra-beam Scattering (IBS) → Special TME with def. dipoles
- Space-Charge(SC)
- Coherent Synchrotron Radiation (CSR)
- Transverse Mode Coupling Instabilities (TMCI)
- Ion/electron cloud instability

Donomotone Cymhol [Huit]	2 GHz	1 GHz	
Parameters, Symbol [Unit]			
Energy, E [GeV]	2.86		
Circumference, C [m]	42	7.5	
Bunch population, N [10 9]	4.	.1	
Basic cell type in the arc/LSS	TME/	FODO	
Number of dipoles, $N_{\rm d}$	10	00	
Dipole Field, B_0 [T]	1.	.0	
Norm. gradient in dipole $[m^{-2}]$	-1	.1	
Horizontal and vertical tune, (Q_x, Q_y)	(48.35)	,10.40)	
Horizontal and vertical chromaticity, (ξ_x, ξ_y)	(-115	5,-85)	
Number of wigglers, $N_{\rm w}$	5	2	
Wiggler peak field, $B_{\rm w}$ [T]	2.	.5	
Wiggler length, $L_{\rm w}$ [m]	2		
Wiggler period, $\lambda_{\rm w}$ [cm]	5		
Hor., vert. and long. damping time, (τ_x, τ_y, τ_l) [ms]	(2.0, 2.0, 1.0)		
Momentum compaction factor, α_c [10 ⁻⁴]	1.3		
Energy loss/turn, U [MeV]	4.	.0	
Norm. horizontal emittance, $\gamma \varepsilon_{\rm v}$ [nm]	472	456	
Norm. vertical emittance, $\gamma \varepsilon_y$ [nm]	4.8	4.8	
Energy spread (r.m.s.), σ_{δ} [%]	0.1	0.1	
Bunch length (r.m.s.), σ_s [mm]	1.6	1.8	
Longitudinal emittance, ε_l [keVm]	5.3	6.0	
IBS growth factors hor./ver./long.	1.5/1.1/1.2	1.5/1.1/1.2	
RF Voltage, V_{RF} [MV]	4.5	5.1	
Stationary phase [^o]	62	51	
Synchrotron tune, $Q_{\rm s}$	0.0065	0.0057	
Bunches per train, n_b	312	156	
Bunch spacing, τ_b [ns]	0.5	1	
RF acceptance, $\varepsilon_{\rm RF}$ [%]	1.0	2.4	
Harmonic number, h	2851	1425	

Requirement for HALHF positron damping rings?

	Injected		Extracted
Bunch population (10 ¹⁰)		3	
Number of bunches/train		160	
Bunch spacing (ns)	16?		16?
Repetition rate (Hz)		100	
Horizontal norm. emittance (um)			
Vertical norm. emittance (um)			
Bunch length (mm)			
Energy spread (%)			