Recently at the Chiemsee (Bavaria, Germany):

BSM Higgs Physics and GW: my personal view

Sven Heinemeyer, IFT (CSIC, Madrid)

Hamburg, 11/2025

- Two joint papers out of 100+ (as a bracket)
- BSM Higgs physics and GW
- A little quiz in the end
- I found \gtrsim 1000 photos \rightarrow will show only a tiny fraction, mostly from 1997 2000 ;-) (\rightarrow 3 intermezzi)
 - ... surprizingly few photos in which Georg is working ...

I started my PhD in 1994 in Karlsruhe with Wolfgang Hollik.

I started my PhD in 1994 in Karlsruhe with Wolfgang Hollik.

I was not smart enough to do the two-loop calculations . . .

I started my PhD in 1994 in Karlsruhe with Wolfgang Hollik.

I was not smart enough to do the two-loop calculations . . .

Wolfgang had to hire a postdoc to help me . . .

I started my PhD in 1994 in Karlsruhe with Wolfgang Hollik.

I was not smart enough to do the two-loop calculations . . .

Wolfgang had to hire a postdoc to help me . . .

 \Rightarrow Georg

I started my PhD in 1994 in Karlsruhe with Wolfgang Hollik.

I was not smart enough to do the two-loop calculations . . .

Wolfgang had to hire a postdoc to help me . . .

\Rightarrow Georg

He recommended me several papers to read . . .

I started my PhD in 1994 in Karlsruhe with Wolfgang Hollik.

I was not smart enough to do the two-loop calculations . . .

Wolfgang had to hire a postdoc to help me . . .

⇒ Georg

He recommended me several papers to read . . . I still have not read them.

I started my PhD in 1994 in Karlsruhe with Wolfgang Hollik.

I was not smart enough to do the two-loop calculations . . .

Wolfgang had to hire a postdoc to help me . . .

⇒ Georg

He recommended me several papers to read ... I still have not read them.

I could not imagine that he would become my best friend with common interests, with the same passion (for BSM Higgs physics), and that we will have many interesting(?) papers together,

I started my PhD in 1994 in Karlsruhe with Wolfgang Hollik.

I was not smart enough to do the two-loop calculations . . .

Wolfgang had to hire a postdoc to help me . . .

⇒ Georg

He recommended me several papers to read ... I still have not read them.

I could not imagine that he would become my best friend with common interests, with the same passion (for BSM Higgs physics), and that we will have many interesting(?) papers together, and that we would go on honeymoon together (but that's another story)

The earliest photo that I found: RadCor 1998 (Barcelona)

Now for the two papers:

Inspire: a weiglein and heinemeyer \rightarrow 249 (131) results

Very old and quite recent, a theme that connects us for a long² time: (and all of todays speakers are co-authors! :-)

arXiv:2012.15629v3 [hep-ph] 17 May 2021

Reconciling the Two-Loop Diagrammatic and Effective Field Theory Computations of the Mass of the Lightest \mathcal{CP} -even Higgs Boson in the MSSM

M. Carena §,†, H.E. Haber ‡, S. Heinemeyer ‡,

W. Hollik ¶, C.E.M. Wagner †,*,‡ and G. Weiglein †

§ FERMILAB, Batavia, IL 60510-0500 USA

† CERN, TH Division, CH-1211 Geneva 23, Switzerland

* Santa Cruz Inst. for Part. Phys., Univ. of California, Santa Cruz, CA 95064 USA

† DESY Theorie, Notkestrasse 85, 22603 Hamburg, Germany

- \P Institut für Theoretische Physik, Univ. of Karlsruhe, 76128 Karlsruhe, Germany
- * High Energy Physics Division, Argonne National Lab., Argonne, IL 60439 USA
- $^{\natural}$ Enrico Fermi Institute, Univ. of Chicago, 5640 Ellis, Chicago, IL 60637 USA

Abstract

The mass of the lightest \mathcal{CP} -even Higgs boson of the minimal supersymmetric extension of the Standard Model (MSSM) has previously been computed including $\mathcal{O}(\alpha \alpha_s)$ two-loop contributions by an on-shell diagrammatic method, while approximate analytic results have also been obtained via renormalization-group-improved effective potential and effective field theory techniques. Initial comparisons of the corresponding two-loop results revealed an apparent discrepancy between terms that depend logarithmically on the supersymmetry-breaking scale, and different dependences of the non-logarithmic terms on the squark mixing parameter, X_t . In this paper, we determine the origin of these differences as a consequence of different renormalization schemes in which both

Higgs-mass predictions in the MSSM and beyond

P. Slavich^a and S. Heinemeyer^{b,c,d} (eds.),

E. Bagnaschi^e, H. Bahl^f, M. Goodsell^a, H.E. Haber^g, T. Hahn^h, R. Harlanderⁱ, W. Hollik^h, G. Lee^{j,k,l}, M. Mühlleitner^m, S. Paßehrⁱ, H. Rzehakⁿ, D. Stöckinger^o, A. Voigt^p, C.E.M. Wagner^{q,r,s} and G. Weiglein^f,

B.C. Allanach^t, T. Biekötter^f, S. Borowka^{u‡}, J. Braathen^f, M. Carena^{r,s,v}, T.N. Dao^w, G. Degrassi^x, F. Domingo^y, P. Drechsel^{f‡}, U. Ellwanger^z, M. Gabelmann^m, R. Gröber^{aa}, J. Klappertⁱ, T. Kwasnitza^o, D. Meuser^f, L. Mihaila^{bb‡}, N. Murphy^{cc‡}, K. Nickel^{y‡}, W. Porod^{dd}, E.A. Reyes Rojas^{ee}, I. Sobolev^f and F. Staub^{m‡}

Predictions for the Higgs masses are a distinctive feature of supersymmetric extensions of the Standard Model, where they play a crucial role in constraining the parameter space. The discovery of a Higgs boson and the remarkably precise measurement of its mass at the LHC have spurred new efforts aimed at improving the accuracy of the theoretical predictions for the Higgs masses in supersymmetric models. The "Precision SUSY Higgs Mass Calculation Initiative" (KUTS) was launched in 2014 to provide a forum for discussions between the different groups involved in these efforts. This report aims to present a comprehensive overview of the current status of Higgs-mass calculations in supersymmetric models, to document the many advances that were achieved in recent years and were discussed during the KUTS meetings, and to outline the prospects for future improvements in these calculations.

They have more in common than one may think . . .

Reconciling the Two-Loop Diagrammatic and Effective Field Theory Computations of the Mass of the Lightest \mathcal{CP} -even Higgs Boson in the MSSM

M. Carena §,†, H.E. Haber ‡, S. Heinemeyer ‡,

W. Hollik ¶, C.E.M. Wagner †,*,‡ and G. Weiglein †

 \S FERMILAB, Batavia, IL 60510-0500 USA † CERN, TH Division, CH–1211 Geneva 23, Switzerland

Santa Cruz Inst. for Part. Phys., Univ. of California, Santa Cruz, CA 95064 USA
 DESY Theorie, Notkestrasse 85, 22603 Hamburg, Germany

- ¶ Institut für Theoretische Physik, Univ. of Karlsruhe, 76128 Karlsruhe, Germany
- * High Energy Physics Division, Argonne National Lab., Argonne, IL 60439 USA
- ^{\(\beta\)} Enrico Fermi Institute, Univ. of Chicago, 5640 Ellis, Chicago, IL 60637 USA

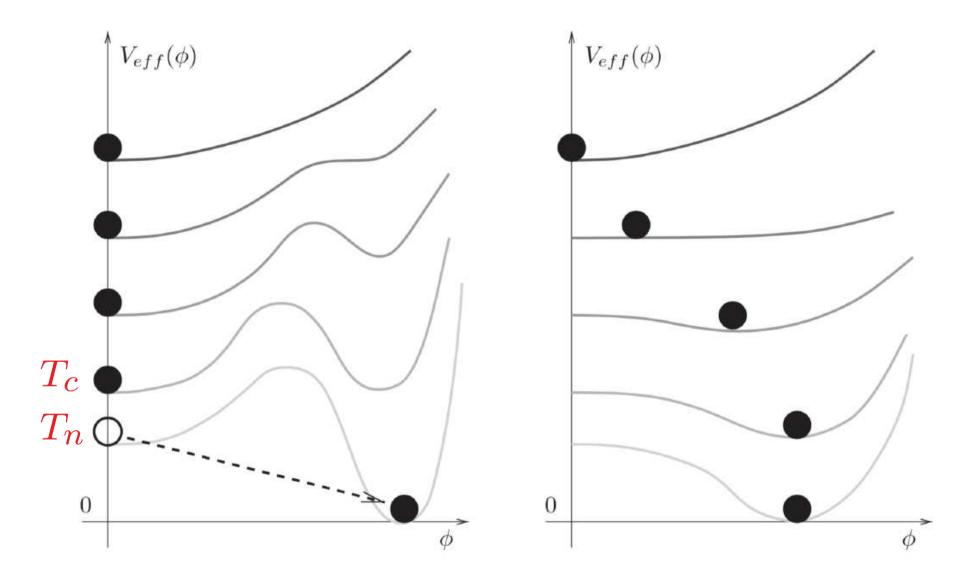
Abstract

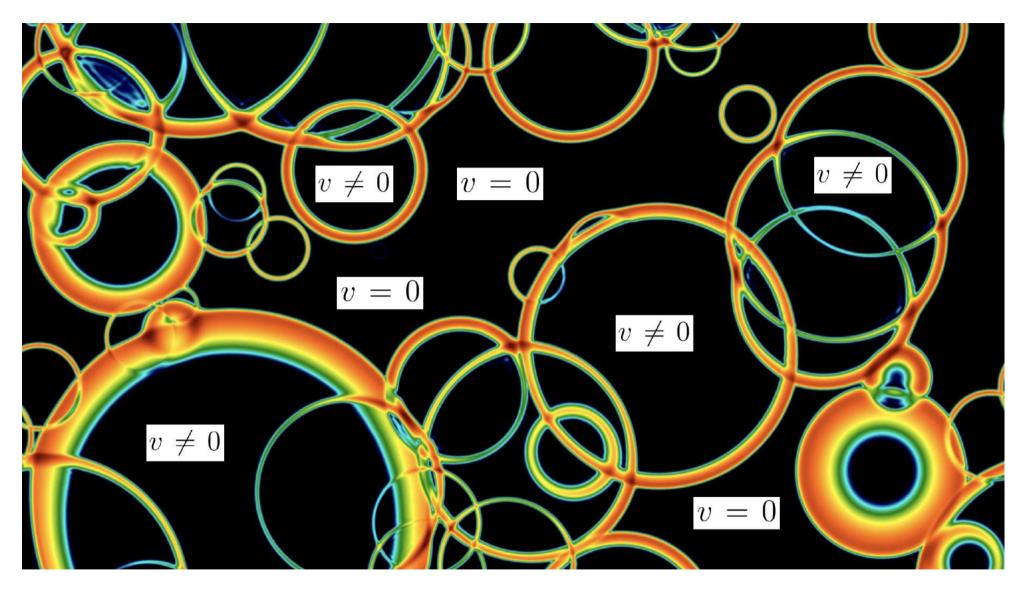
The mass of the lightest \mathcal{CP} -even Higgs boson of the minimal supersymmetric extension of the Standard Model (MSSM) has previously been computed including $\mathcal{O}(\alpha \alpha_s)$ two-loop contributions by an on-shell diagrammatic method, while approximate analytic results have also been obtained via renormalization-group-improved effective potential and effective field theory techniques. Initial comparisons of the corresponding two-loop results revealed an apparent discrepancy between terms that depend logarithmically on the supersymmetry-breaking scale, and different dependences of the non-logarithmic terms on the squark mixing parameter, X_t . In this paper, we determine the origin of these differences as a consequence of different renormalization schemes in which both

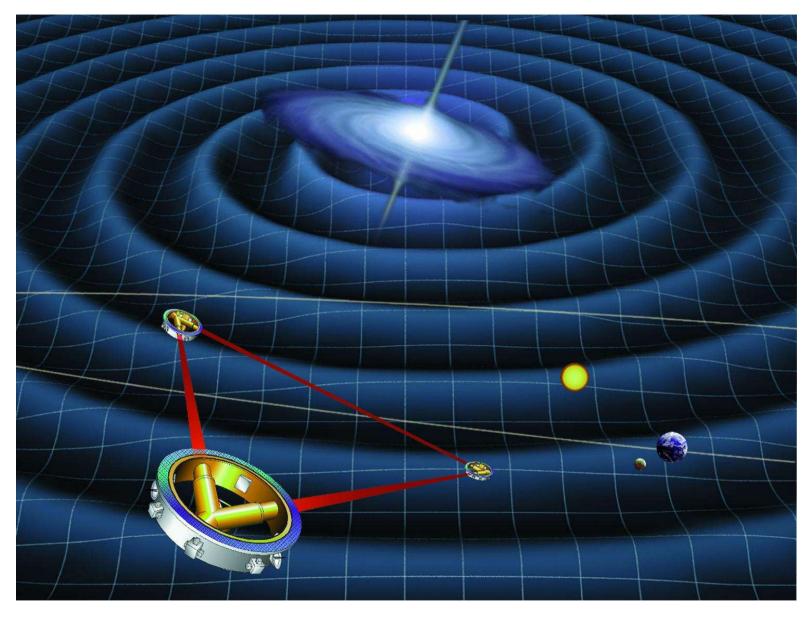
- ⇒ note the arXiv number!
- ⇒ the second paper in the new millenium

(modulo 2000 vs. 2001)

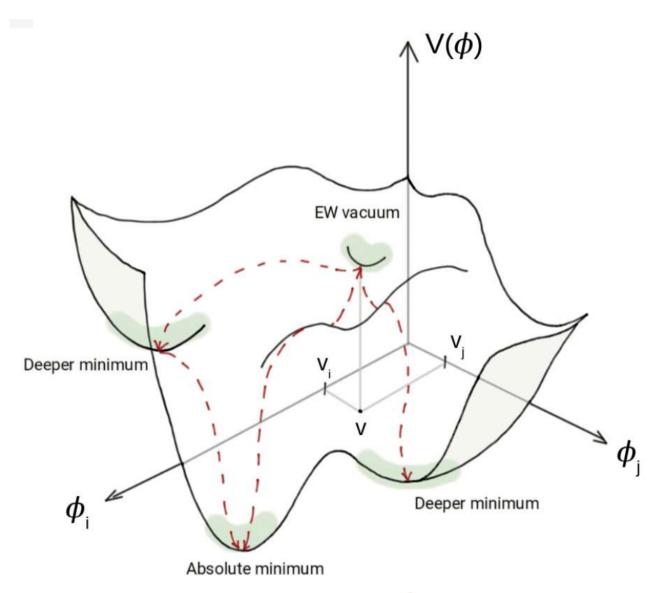
BSM Higgs Physics and GW


BSM Higgs Physics and GW (large part of our work since ~2020)


BSM Higgs Physics and GW (large part of our work since ~2020)


- \Rightarrow Why is there more matter than antimatter? \Rightarrow (EW) baryogenesis
- ⇒ requires First Order EW Phase Transition (FOEWPT)
- FOEWPT not possible in the SM \Rightarrow BSM Higgs sector required
- FOEWPT can cause Gravitational Waves (GW), detectable with LISA, . . .

⇒ BSM Higgs sector required to realized FOEWPT



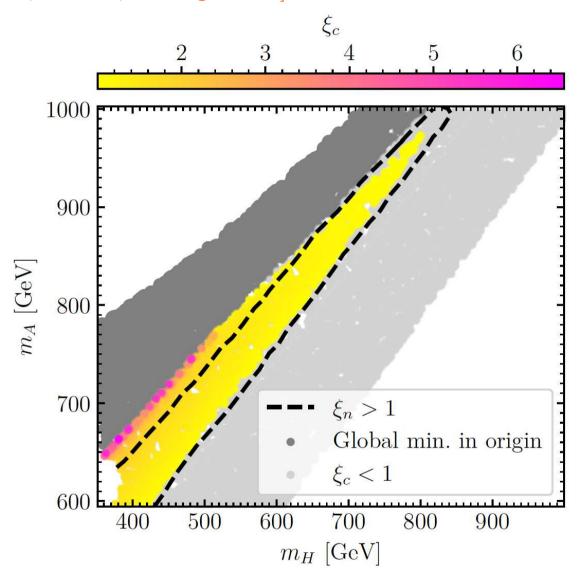
⇒ Interesting interplay of Higgs physics and Gravitational Waves!

Approved launch date: \sim 2035

[K. Radchenko '24]

 \Rightarrow much more complicated structure, very² little known . . .

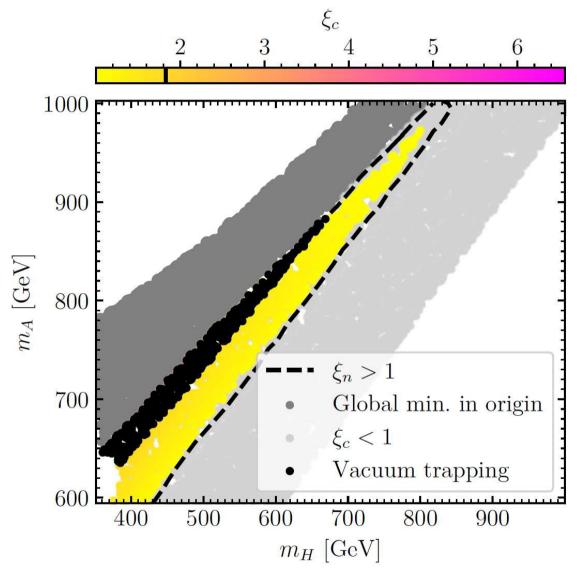
 \Rightarrow FOEWPT in the 2HDM type II? \Rightarrow parameter scan \Rightarrow ScannerS


$$\tan\beta=\text{3, }c_{\beta-\alpha}=\text{0, }m_{12}^2=m_H^2s_\beta c_\beta$$
 0.2 TeV $\leq m_H\leq \text{1 TeV, 0.6 TeV}\leq m_A=m_{H^\pm}\leq \text{1.2 TeV}$

Constraints:

- Tree-level perturbativity ⇒ ScannerS
- Minimum of potential is global minimum ⇒ ScannerS
 ... or sufficiently long-lived ⇒ Evade
- Higgs searches at LEP, Tevatron, LHC ⇒ HiggsBounds
- SM-like Higgs properties \Rightarrow HiggsSignals (2HDECAY, SusHi) $\Rightarrow \chi^2_{125}$ (with $\chi^2_{\text{SM},125} = 84.4$)
- Flavor physics (mainly BR($B_s \to X_s \gamma$), ΔM_{B_s}) \Rightarrow SuperIso bounds
- Electroweak precision data $(T \text{ and } S) \Rightarrow ScannerS$

GWs in the 2HDM: $\xi_c := v_c/T_c \gtrsim 1$


[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

 \Rightarrow large ξ_c found in the 2HDM \Rightarrow strong GW signal?

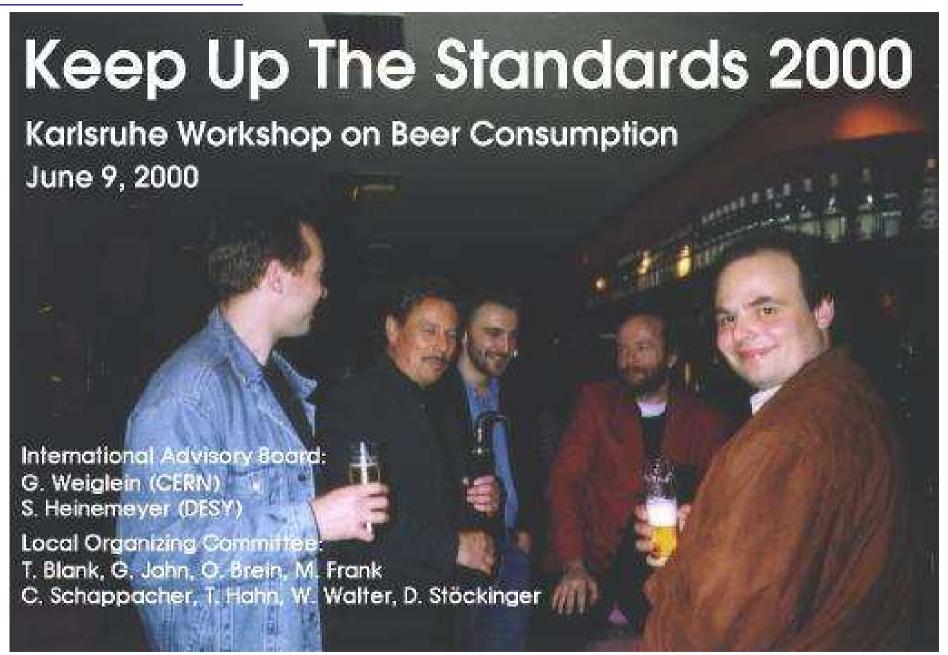
GWs in the 2HDM: $\xi_n := v_n/T_n \gtrsim 1$

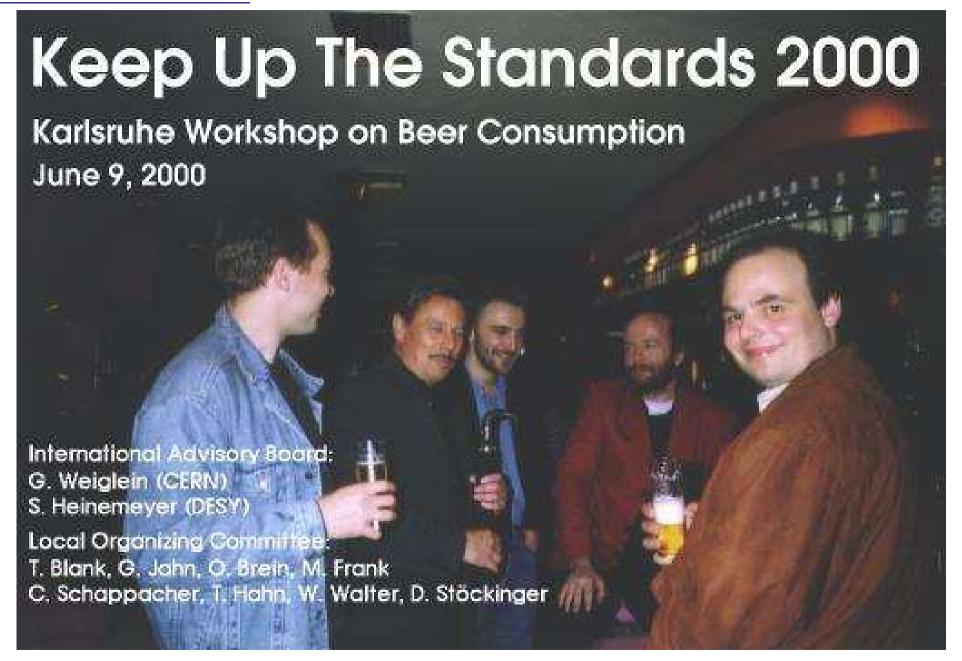
[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

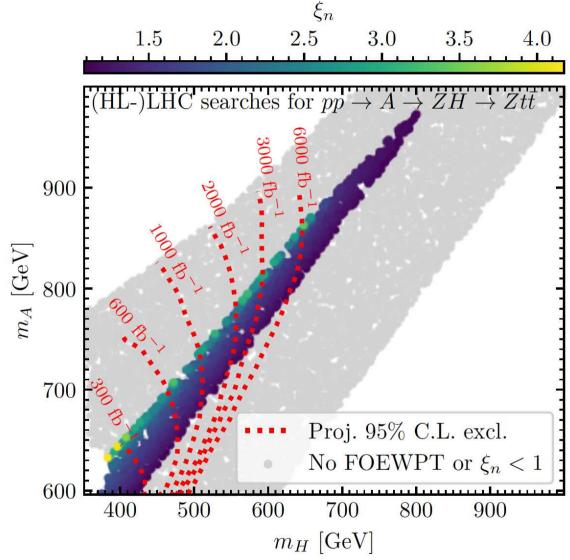
⇒ Thanks to Georg there are less GWs: forbidden by vacuum trapping

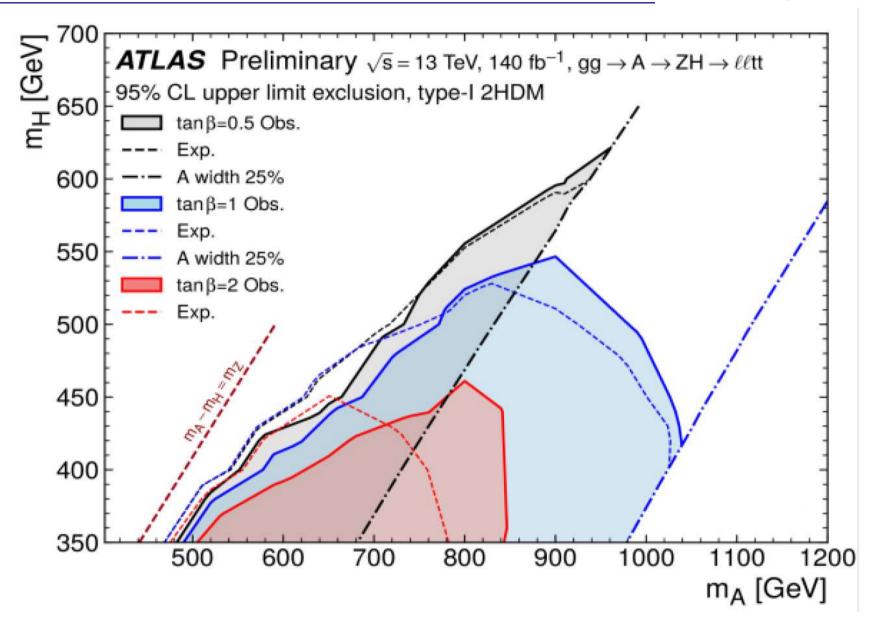
Intermezzo I: first workshop photos (DESY Theory WS 1998, my flat)

Intermezzo I: first workshop photos (DESY Theory WS 1998, my flat)

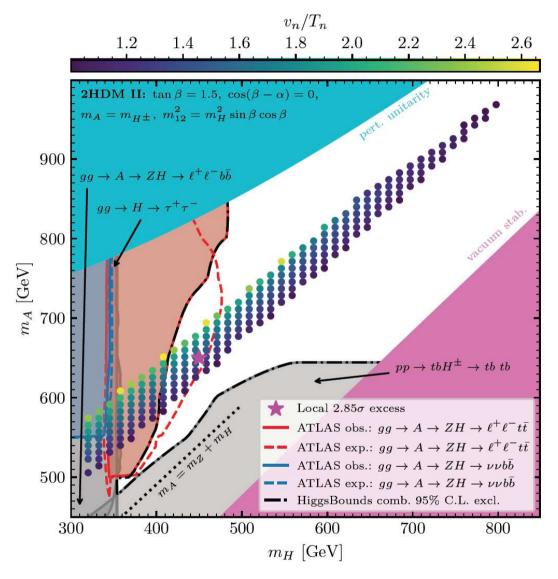



Intermezzo I: first workshop photos (LCWS 1999, Sitges)


Intermezzo I: first workshop photos (LCWS 1999, Sitges)

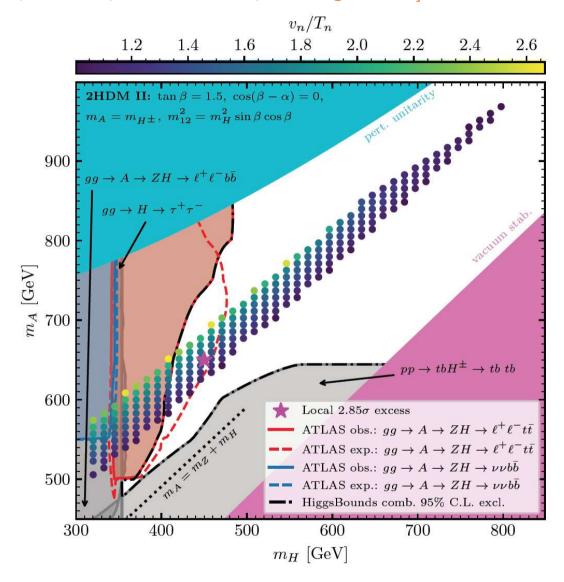


Smoking gun signature: gap between m_A and $m_H \Rightarrow pp \rightarrow A \rightarrow ZH \rightarrow Zt\bar{t}$


⇒ GW zone can be covered at the HL-LHC

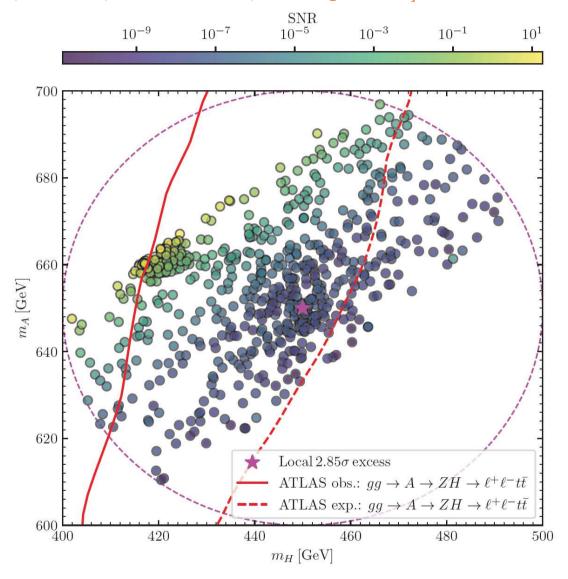
 \Rightarrow interesting excess in the "right spot" :-) ($m_H = 450 \text{ GeV}$, $m_A = 650 \text{ GeV}$)

Smoking gun signature: highest excess for $\tan \beta = 1.5$


[T. Biekötter, S.H., J. No, O. Olea, K. Radchenko, G. Weiglein '23]

⇒ excess in the sweet spot

Smoking gun signature: highest excess for $\tan \beta = 1.5$


[T. Biekötter, S.H., J. No, O. Olea, K. Radchenko, G. Weiglein '23]

 \Rightarrow excess in the sweet spot \Rightarrow not confirmed by CMS Run 2 analysis :-(

Smoking gun signature: GW signal at LISA?

[T. Biekötter, S.H., J. No, O. Olea, K. Radchenko, G. Weiglein '23]

⇒ Again Georg demonstrated that a GW signal is very difficult!

Intermezzo II: Life in Karlsruhe & our Phys. Rep.

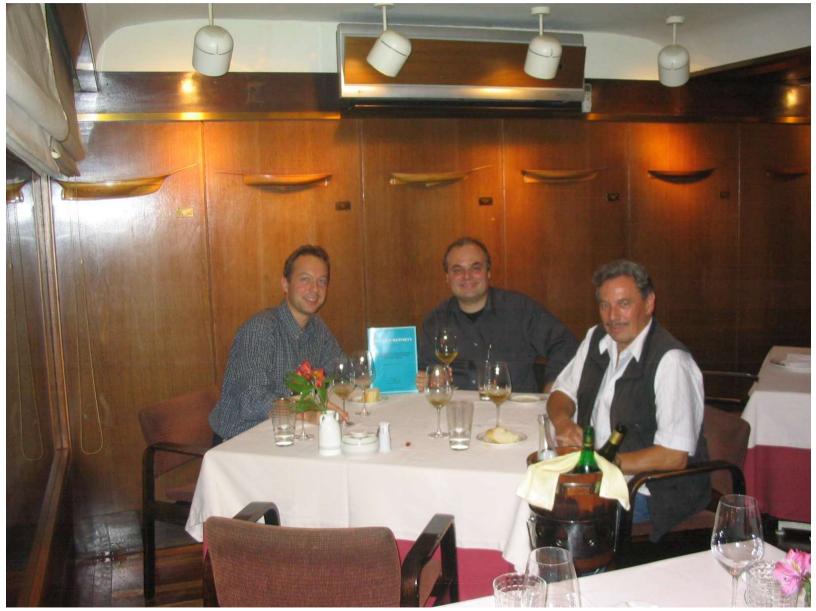
PhD party in Karlsruhe, Georg opens the beer barrel:

Intermezzo II: Life in Karlsruhe & our Phys. Rep.

PhD party in Karlsruhe, Georg opens the beer barrel: or not . . .

Intermezzo II: Life in Karlsruhe & our Phys. Rep.

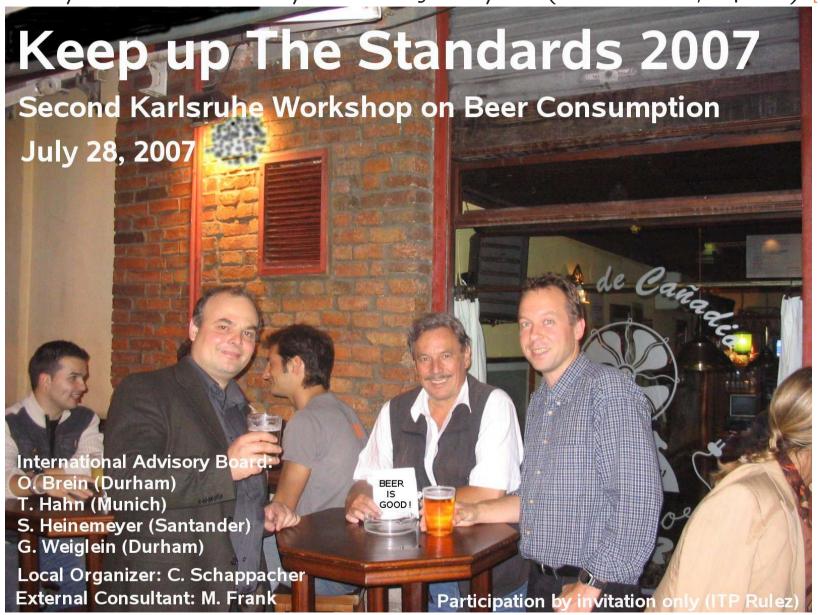
PhD party in Karlsruhe, Georg opens the beer barrel: or not . . .


Intermezzo II: Life in Karlsruhe & our Phys. Rep.

At the ITP everybody worked super hard, until the very end:

Intermezzo II: Life in Karlsruhe & our Phys. Rep.: EWPO in the MSSM

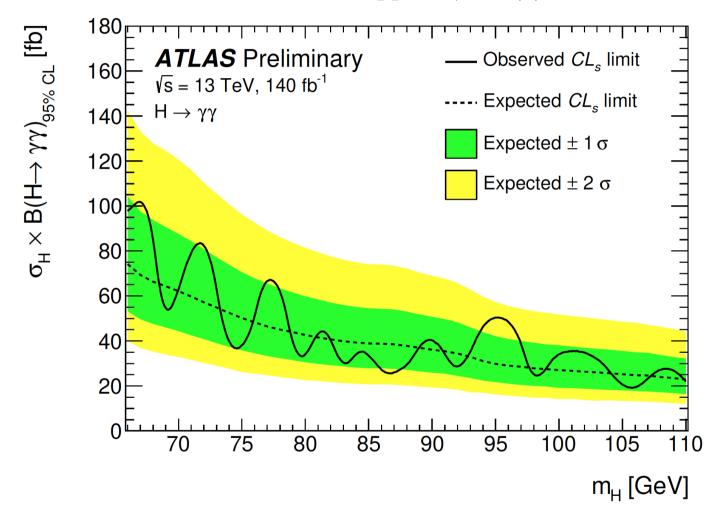
deadline: 12/99. Hand in: 12/04. Party: 05/06 (Santander, Spain) [400+ cit.]


Intermezzo II: Life in Karlsruhe & our Phys. Rep.: EWPO in the MSSM

deadline: 12/99. Hand in: 12/04. Party: 05/06 (Santander, Spain) [400+ cit.]

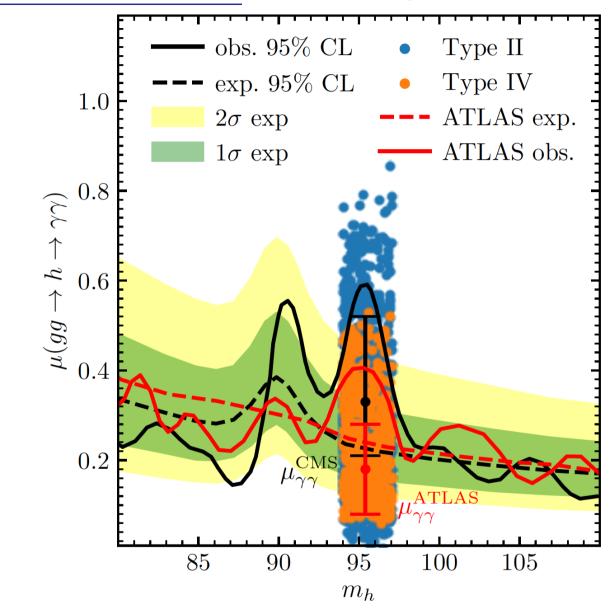
Intermezzo II: Life in Karlsruhe & our Phys. Rep.: EWPO in the MSSM

deadline: 12/99. Hand in: 12/04. Party: 05/06 (Santander, Spain) [400+ cit.]

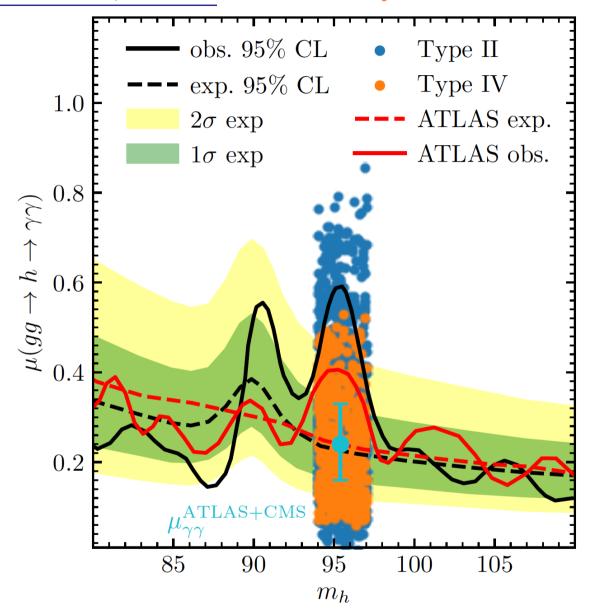

BSM Higgs physics and GW III:

Georg's (only?) chance to win the Nobel Prize?

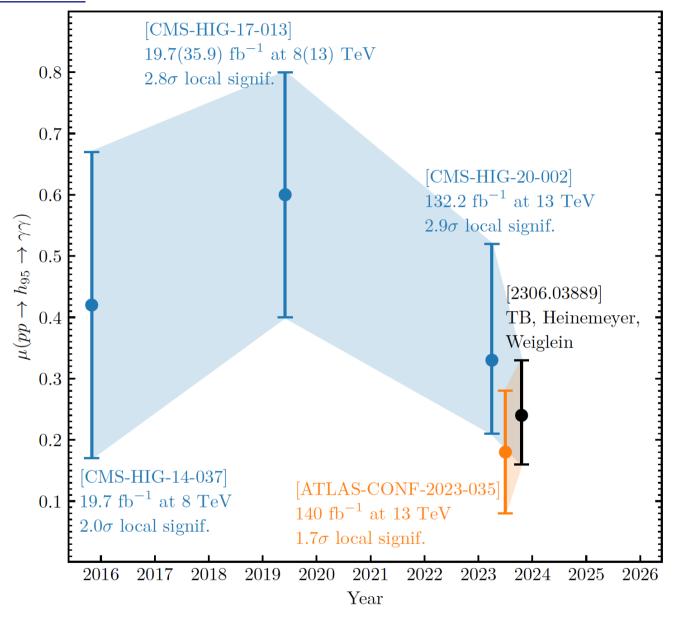
BSM Higgs physics and GW III:


Georg's (only?) chance to win the Nobel Prize?

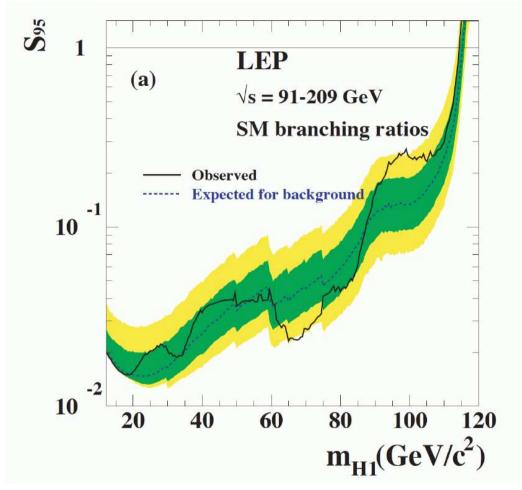
ATLAS results for low-mass search in $pp \to \phi \to \gamma\gamma$:



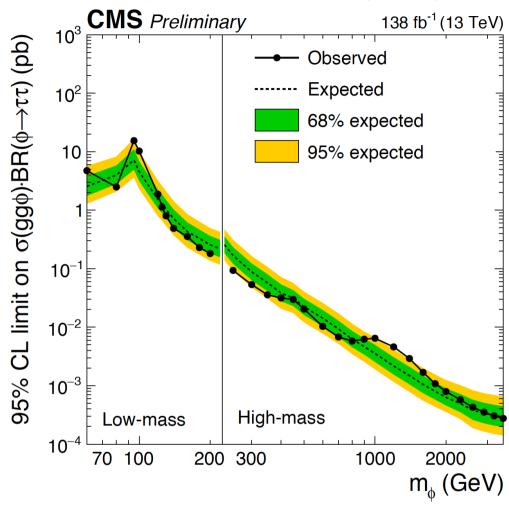
⇒ higest "excess" at 95.4 GeV



⇒ agreement between ATLAS and CMS!


⇒ agreement between ATLAS and CMS!

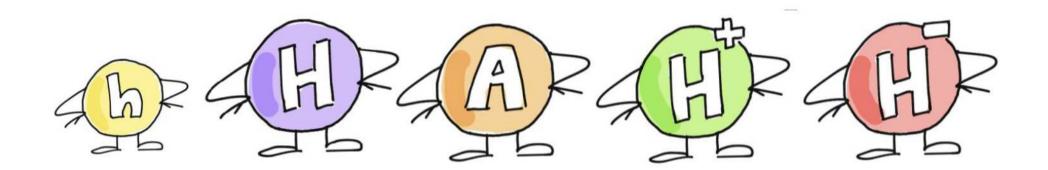
 $\mu_{\gamma\gamma} = 0.24^{+0.09}_{-0.08} (3.1 \,\sigma)$


 \Rightarrow note the reduction of $\mu_{\gamma\gamma}$ over time!

LEP: $e^+e^- \rightarrow Z\phi \rightarrow Zb\bar{b}$ (2 σ)

$$\mu_{bb}^{\text{exp}} = 0.117 \pm 0.057,$$

CMS: $pp \rightarrow \phi \rightarrow \tau^+\tau^-$ (2.4 σ)


$$\mu_{\tau\tau}^{\text{exp}} = 1.2 \pm 0.5$$

 \Rightarrow no LEE (as theorist I am allowed to add naively)

$$\Rightarrow$$
 \sim 3.7 (4.6) σ

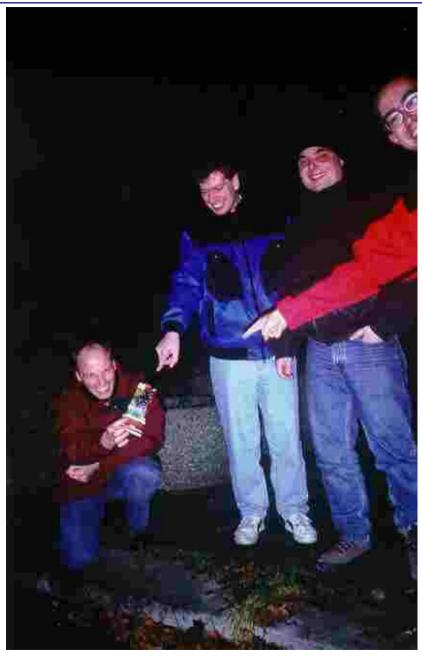
 \Rightarrow note: $tt\phi, Z\phi$ with $\phi \to \tau\tau$

Possible model interpretation

[K. Radchenko]

Georg (plus various groups of collaborators) showed that the h_{95} can be naturally/easily described by:

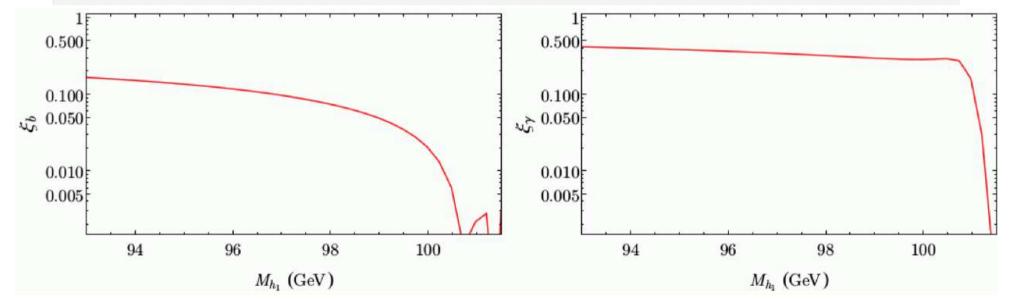
- N2HDM (type II/IV)
- S2HDM (type II/IV)
- Georgi-Machacek (GM) Model
- minimally extended Georgi-Machacek (meGM) Model
- what about SUSY?


The Happy Higgs Family:

- \Rightarrow type II is needed for SUSY
- $\Rightarrow \tau \tau$ excess most strongly in contradiction with other measurements
- \Rightarrow leave $\tau\tau$ excess out for a moment . . .

- ⇒ type II is needed for SUSY
- $\Rightarrow \tau \tau$ excess most strongly in contradiction with other measurements
- \Rightarrow leave $\tau\tau$ excess out for a moment . . .
- ⇒ models with an additional singlet??

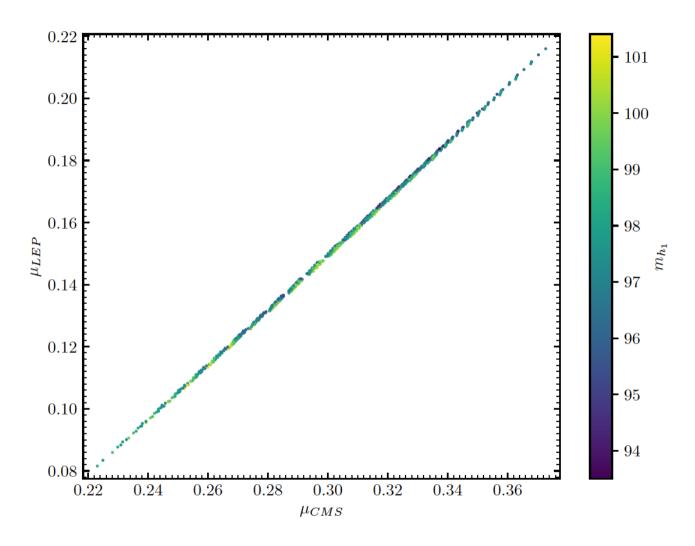
- ⇒ type II is needed for SUSY
- $\Rightarrow \tau \tau$ excess most strongly in contradiction with other measurements
- \Rightarrow leave $\tau\tau$ excess out for a moment . . .
- ⇒ models with an additional singlet??
- NMSSM
- $-\mu\nu$ SSM
- **—** . . .


- \Rightarrow type II is needed for SUSY $\Rightarrow \tau \tau$ excess most strongly in contradiction with other measurements \Rightarrow leave $\tau \tau$ excess out for a moment . . . \Rightarrow models with an additional singlet??
- NMSSM
- $-\mu\nu$ SSM
- **—** . . .
- Q: Can the models fit the excesses despite the additional SUSY constraints on the Higgs sector ???

Parameters:

 $\lambda = 0.6, \ \kappa = 0.035, \ \tan \beta = 2, \ \mu_{\rm eff} = (397 + 15x) \ {\rm GeV}, \ M_{H^\pm} = 1 \ {\rm TeV},$ $A_{\kappa} = -325$ GeV, $M_{\text{SUSY}} = 1$ TeV, $A_t = A_b = 0$

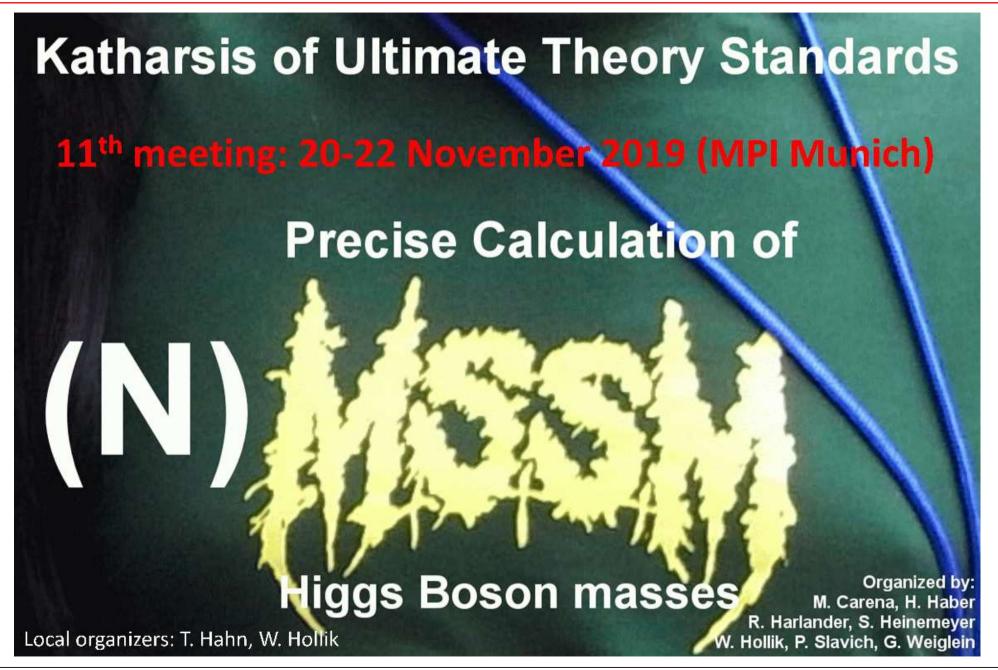
$$\xi_{b} \equiv \frac{\Gamma[h_{1} \to ZZ] \cdot \text{BR}[h_{1} \to b\bar{b}]}{\Gamma[H_{\text{SM}}(M_{h_{1}}) \to ZZ] \cdot \text{BR}[H_{\text{SM}}(M_{h_{1}}) \to b\bar{b}]} \sim \frac{\sigma[e^{+}e^{-} \to Z(h_{1} \to b\bar{b})]}{\sigma[e^{+}e^{-} \to Z(H_{\text{SM}}(M_{h_{1}}) \to b\bar{b})]}$$


$$\xi_{\gamma} \equiv \frac{\Gamma[h_{1} \to gg] \cdot \text{BR}[h_{1} \to \gamma\gamma]}{\Gamma[H_{\text{SM}}(M_{h_{1}}) \to gg] \cdot \text{BR}[H_{\text{SM}}(M_{h_{1}}) \to \gamma\gamma]} \sim \frac{\sigma[gg \to h_{1} \to \gamma\gamma]}{\sigma[gg \to H_{\text{SM}}(M_{h_{1}}) \to \gamma\gamma]}.$$

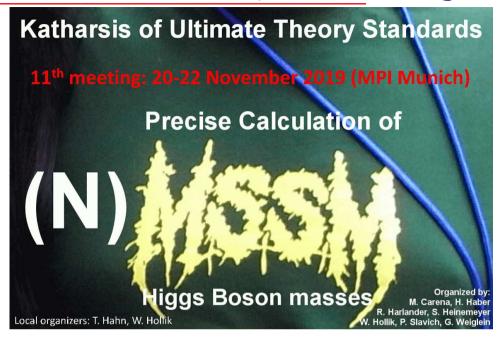
 \Rightarrow both excesses can be fitted simultaneously well with new $\mu_{\gamma\gamma}!$

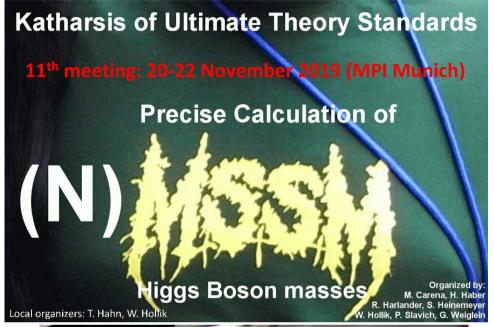
Why does SUSY prefer the new $\mu_{\gamma\gamma}$?

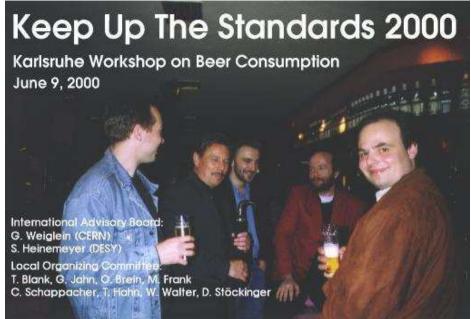
[T. Biekötter, S.H., C. Muñoz '19]



- ⇒ SUSY enforces strong correlation!
- \Rightarrow LEP excess enforces $\mu_{\gamma\gamma} \lesssim$ 0.35 as found in the data now :-)


And very finally: a photo from SUSY'09 with two previous speakers . . .


...that introduces the second paper


The KUTS workshop series: Georg's idea for the title! :-)

KUTS: Georg's idea for the title! ⇒ based on the ITP motto!

The final KUTS report: (with topical overlap with the first paper ;-)

Higgs-mass predictions in the MSSM and beyond

P. Slavich^a and S. Heinemeyer^{b,c,d} (eds.),

E. Bagnaschi e , H. Bahl f , M. Goodsell a , H.E. Haber g , T. Hahn h , R. Harlander i ,

W. Hollik^h, G. Lee^{j,k,l}, M. Mühlleitner^m, S. Paßehrⁱ, H. Rzehakⁿ, D. Stöckinger^o, A. Voigt^p, C.E.M. Wagner^{q,r,s} and G. Weiglein^f,

B.C. Allanach^t, T. Biekötter^f, S. Borowka^{u‡}, J. Braathen^f, M. Carena^{r,s,v},

T.N. Dao w , G. Degrassi x , F. Domingo y , P. Drechsel f‡ , U. Ellwanger z , M. Gabelmann m ,

R. Gröber^{aa}, J. Klappertⁱ, T. Kwasnitza^o, D. Meuser^f, L. Mihaila^{bb†}, N. Murphy^{cc†}, K. Nickel^{y‡}, W. Porod^{dd}, E.A. Reves Rojas^{ee}, I. Sobolev^f and F. Staub^{m‡}

Predictions for the Higgs masses are a distinctive feature of supersymmetric extensions of the Standard Model, where they play a crucial role in constraining the parameter space. The discovery of a Higgs boson and the remarkably precise measurement of its mass at the LHC have spurred new efforts aimed at improving the accuracy of the theoretical predictions for the Higgs masses in supersymmetric models. The "Precision SUSY Higgs Mass Calculation Initiative" (KUTS) was launched in 2014 to provide a forum for discussions between the different groups involved in these efforts. This report aims to present a comprehensive overview of the current status of Higgs-mass calculations in supersymmetric models, to document the many advances that were achieved in recent years and were discussed during the KUTS meetings, and to outline the prospects for future improvements in these calculations.

In 2020 we got it out juuuuust in time :-)

Happy 29th Birthday, Georg!!

One down, five to go!

Happy 29th Birthday, Georg!! (for the 32nd time!)

One down, five to go!

As promised: a little quiz: spot Georg! (It is possible ...)

