Using the.NA

Beyer Christoph

HELMHOLTZ

An Introduction to
Using HTCondor

Christina Koch
HTCondor Workshop Autumn 2020
September 21, 2020

HTConadY%r

What is HTCondor?

* Software that
schedules and runs
computing tasks on
computers

Strodt on-WikiMedia, CC-BY-SA

Photo by Johanna

How It Works

* Submit tasks to a queue (on a submit point)

* HTCondor schedules them to run on computers (execute points)

n 8

=)

tasks

submit

queue

HTConAr

A

® VX

X
D
e
c
—~+
d

€
<

execute

7.

execute

Post It by Arianna Galimberti; papers by jabbar; Math by Turkkub from the Noun Project

HTCondor on Many Computers

0
2

tasks

submit

queue

execute

execute

computer tower by Ralf Schmitzer from the Noun Project

Why HTCondor?

*HTCondor manages and runs work on your behalf.

*Manage shared resources among users:

* Schedule tasks on a single computer to manage computer
capacity.

* Schedule tasks on a group* of computers (which may/may |
be directly accessible to the user).

* Schedule tasks submitted by multiple users on one or more
computers.

*in HTCondor-speak, a “pool”

HTCondor Jobs

« HTCondor schedules and executes
Jobs

e What Is a Job?

* A‘Job’ is a single computational task

1. Input Data
2. Executable (program)
3. Output Data

e Executable must be runnable from
the command line without any
Interactive input

Sources of ‘pizza ingredients’ in the NAF

Shared filesystems are part of the design approach

* The login node (called WGS) is the place where you login (usually through SSH) in order to submit and
control your jobs

* The WGS is named as your VO e.g. naf-cms.desy.de and the actual, physical server is chosen in a round-
robin mechanism

* The WGS is setup equally to the workernode that later will execute your program, including all the fileservice
mounts, anything that runs ‘here’ and is accessible will run and be accessible ‘there’ (on the target worker
node) without further thinking or action !

* Executables and data live in the shared FS, smaller executable can be transferred with the job for strategical
reasons

* No batchsystem will create directories on your behalf, if you rely on a certain dir-structure e.g. for your output
you need to create the structure in forehand

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer") Page 8

Describing an HTCondor Job

executable = sleep_runtime.sh
Arguments = 600

output = $(Cluster).$(Process).out
error = $(Cluster).$(Process).err
log = $(Cluster).$(Process).log

request_cpus =1
request_disk = 50MB
request_memory = 20MB

queue 1

Describe an HTCondor job
with the Job Description
Language (JDL)

CAT-Analysis.sub

Describing an HTCondor Job

executable = sleep_runtime.sh
arguments = 600

output = $(Cluster).$(Process).out
error = $(Cluster).$(Process).err
log = $(Cluster).$(Process).log

request_cpus =1
request_disk = 50MB
request_memory = 20MB

queue 1

List the executable and
arguments for HTCondor to run
at the EP like how you would
run the executable by hand

$ sleep_runtime.sh 6(

CAT-Analysis.sub

Describing an HTCondor Job

executable = sleep_runtime.sh
arguments = 600

* log - Generated by HTCondor to
track job progress from key
events in the jobs lifetime

output = $(Cluster).$(Process).out * output - File that captures the
error = $(Cluster).$(Process).err jobs STDOUT
log = $(Cluster).$(Process).log .

error - File that captures the

request_cpus = 1 jobs STDERR
request_disk = 50MB

request_memory = 20MB

queue 1

CAT-Analysis.sub

Describing an HTCondor Job

executable = sleep_runtime.sh
Arguments = 600

* Request the
appropriate
resources for

output = $(Cluster).$(Process).out your JOb to run.

error = $(Cluster).$(Process).err

log = $(Cluster).$(Process).log \ queue - keyword
indicating

request_cpus = 1 “create a job.”

request_disk = 50MB
request_memory = 20MB

queue 1

CAT-Analysis.sub LA N

Short interlude - ive-demo

Resource Requirements

« Jobs are nearly always using a part of a computer, not the whole
thing. EP divides worker node into execute "Slots".

 Very important to request appropriate resources (memaory, cpus,
disk) for a job

 Job will likely be enforced to only use what it requests

Resource Assumptions

1 1™~ 1 _ZYA1I

® Try to run default jobs whenever possible in order to use surplus
Quota
IF default resources are not working for your jobtype request
Resources accordingly

* Important to run test jobs and use the log file to request the
right amount of resources:

* requesting too little: causes problems for your and other jobs; jobs
might by held by HTCondor

* requesting too much: jobs will match to fewer “slots”

P Y ataVal

How should your piece of the pie look - resource requests

Only request what you need and if it’s beyond the default limits

* Request_Runtime = <seconds> — defaults to 3h if not requested

* Request_Memory = <Mbyte> - defaults to 3GB if not requested

* Request_Disk = <kByte> - defaults to 512 MB

* Request _Cpus = <num of cpus> - defaults to 1 if not requested

* Request GPUs = <num of gpus> - you need a special resource to use GPUS

* (Request_OpSysAndVer = "<OS>" -, defaults to RHEL9)

* Check your ressource requests using ‘condor_q <jobid> -af Request<ressource>' (no ‘_’ here)

* Use same syntax with condor_history for finished jobs

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer") Page

Lite & bide jobs/ quotas/ priorities

Once you run a lot of jobs this will be a thing

All jobs in the NAF gets automatically categorized in ‘lite’ and ‘bide’ jobs

* Lite jobs are submissions with no special resource requests (diskspace as an exception) they will run 3h
with 1 core and 3GB memory

* Lite jobs are able to run on nearly the whole pool, outside of your groups guota (surplus)

* Bide jobs are jobs with ‘bigger’ specific resource requests and are bound to your groups quota, if the quota is
tight it will take time to get these started also bigger pieces of ‘the pie’ may be harder to find even if quota and
priority are in your favor

* Groupquotas are fix for ‘bide’ jobs and elastic for ‘lite’ jobs

* Inside the groups there is no quotation (as in ‘per user’) instead there is a priority system based on previous
and current usage called fairshare

* Use ‘condor_userprio.desy’ (!) to check your current usage, priority etc.

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer") Page

Submitting and Monitoring Jobs

* To submit a job/jobs:
condor_submit submit_file_name

* To monitor submitted jobs, use:
condor_q

$ condor_submit job.submit
Submitting job(s).
1 job(s) submitted to cluster 128.

$ condor_q

- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:96187?... @ 05/01/19 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice 1ID: 128 5/9 11:09 _ 1 1 128.0

1 jobs; @ completed, O removed, 1 idle, O running, O held, © suspended

HTCondor Mantial: condor <tibmit

More about condor_q

* By default condor_q shows:
* user’s job(s) only (as of 8.6)
* jobs summarized in “batches” (as of 8.6)

® Constrain with username, clusterId or full JobId , which
will be denoted [U/C/J] in the following slides.

$ condor_q
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/09/19 11:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice 1ID: 128 5/9 11:09 _ 1 1 128.0

1 jobs; 0 completed, O0 removed, 1 idle, O running, 0 held, O suspended

JobId =ClusterId ProclIld

More about condor_(g

* To see individual job information, use:
condor_g -nobatch

$ condor_q -nobatch
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:96187?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; O completed, © removed, 1 idle, O running, O held, O suspended

* We will use the -nobatch option in the following slides to see
extra detail about what is happening with a job

Job Idle

$ condor_q -nobatch
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:96187?...

ID OWNER SUBMITTED RUN_TIME RI SIZE CMD
128.0 alice 5/9 11:09 0+00:00: 0] 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, O removed, @ running, 0 held, O suspended

Submit Node
(submit_dir)/

//;ob.submit \\\

compare_states
wl.dat

us.dat

job. log

N /

Job Starts

$c

ID
128

ondor_q -nobatch
Schedd: submit-1.chtc.wisc.edu

OWNER SUBMITTED
.0 alice

5/9 11:09

1 <128.104.101.92:96187...

RUN_TIME RI SIZE CMD
0+00:00:0 0.0 compare_states wi.dat us.dat w

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, O suspended

Submit Node

(submit_dir)/

~

Execute Node

(execute_dir)/

//;ob.submit

compare_states
wl.dat
us.dat
job. log

N

compare_states
wil.dat
us.dat

<
compare_states

wi.dat
us.dat

N

~

Job Running

$ condor_q -nobatch

-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:96187?...

ID OWNER SUBMITTED RUN_TIME PRI SIZE CMD
128.0 alice 5/9 11:09 ORCIOMICH R0 0.0 compare_states wi.dat us.dat
1 jobs; O completed, O removed, 0 idle p held, 0 suspended
Submit Node Execute Node
(submit_dir)/ (execute_dir)/
//;ob.submit \\\ //gompare_states \\\
compare_states wi.dat
wi.dat us.dat
us.dat stderr
job. log stdout
wi.dat.out

Job Completes

$ condor_q -nobatch
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:96187...

ID OWNER SUBMITTED RUN_TIME RI SIZE CMD
128 alice 5/9 11:09 0+00:02: o] 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, © removed, 0 idle, 1 running, 0 held, O suspended

Submit Node Execute Node
(submit_dir)/ (execute_dir)/
Gob.submit \ ﬂompare_states \

compare_states wi.dat

wi.dat stderr us.dat

us.dat _StdOUt stderr

job. log wi.dat.out stdout

X wi.dat.out

Job Completes (cont.)

$ condor_q -nobatch

-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:96187?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

@ jobs; O completed, O removed, 0 idle, 0 running, O held, 0 suspended

Submit Node
(submit_dir)/

//;ob.submit \\\

compare_states
wi.dat
us.dat
job. log
job.err
job.out

\\?i.dat.out ///

Log File

000 (7195807.000.000) 05/19 14:30:18 Job submitted from host:
<128.105.244.191:9618 ...>

040 (7195807.000.000) 05/19 14:31:55 Started transferring input files
Transferring to host: <128.105.245.85:9618 ...>

040 (7195807.000.000) 05/19 14:31:55 Finished transferring input files

001 (7195807.000.000) 05/19 14:31:56 Job executing on host:
<128.105.245.85:9618? ...>

005 (7195807.000.000) 05/19 14:35:56 Job terminated.
(1) Normal termination (return value 0)

Partitionable Resources : Usage Request Allocated
Cpus : 0] 1 1
Disk (KB) : 26 1024 995252

Memory (MB) : 1 1024 1024

Job States

transfer transfer
executable output
and input to back to
execute submit node
node
condor_ Running N Completed
submit (R) (®

in the queue leaving the queue

Assumptions

* Aspects of your submit file may be dictated by infrastructure and
configuration.

* For example: file transfer

* previous example assumed files would need to be transferred between
submit/execute

should _transfer_files = YES

* not the case with a shared filesystem = true for NAF

should transfer_ files = NO

Submitting Multiple Jobs
with HTCondor

Why do we care?

*Run many independent jobs...
* analyze multiple data files

* test parameter or input
combinations

* and more!

Why do we care?

*Run many independent jobs... g
* analyze multiple data files

* test parameter or input
combinations

* and more!

...without having to:
* start each job individually

° create separate submit files for
each job

Many Jobs, One Submit File

*HTCondor has built-in
ways to submit
multiple independent

jobs with one submit
file.

Photo byJoanna Kosinskaon Unsplash

Numbered Input Files

* Goal: create 3 jobs that each analyze a different input file.

job.submit

(submit_dir)/
executable = analyze.exe

arguments = file0.in fileO.out //, \\\
transfer_input_files = file0.1n analyze.exe
fileO.1in
log = job. log filel.1in
output = job.out file2.1in
error = job.err
job.submit

= . J

Multiple Jobs, No Variation

* This file generates 3 jobs, but doesn’t use multiple inputs and will
overwrite outputs

job.submit

(submit_dir)/
executable = analyze.exe

arguments = file0.in fileO.out //, \\\
transfer_input_files = file0.1n analyze.exe
fileO.1in
log = job. log filel.1in
output = job.out file2.1in
error = job.err
job.submit

queue 3 \\\ ///

Automatic Variables

* Each job's
ClusterId Procld
Clusterld jn(g

ProcId can be

200 128 0
accessed inside the /
gqueue N > 128 1

submit file using:

28 2
$(ClusterId) .

$(ProcId) - -

Job Variation

* How to uniquely identify each job (filenames, log/out/err names)?

job.submit
(submit_dir)/

executable = analyze.exe

arguments = file@.in fileO.out //, \\\
transfer_input_files = file0.1n analyze.exe
fileO.1in
log = job.log filel.1in
output = job.out file2.1in
error = job.err
job.submit

gqueue 3 \\\ ///

Using $(Procld)

*Use the $(ClusterId), $(ProcId)variables to provide
unique values to jobs.*

job.submit : :
(submit_dir)/

executable = analyze.exe //’ ‘\\
arguments = file$(ProcId).in file$(ProcId).out 1
transfer_input_files = file$(ProcId).in ?ziegziﬁexe

log = job-$(ClusterId)-$(ProcId). log :1{2;'12

output = job-$(ClusterId)-$(ProcId).out
error = job-$(ClusterId)-$(ProcId).err
Job-$(Clu)-$() job.submit

queue 3 \\\ ///

Submit and Monitor (review)

condor_submit submit file name
condor_g

* Jobs in the queue will be grouped in batches (in this case by cluster
number)

$ condor_submit job.submit
Submitting job(s).
3 job(s) submitted to cluster 128.

$ condor_q

-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/09/19 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice 1ID: 128 5/9 11:03 3 3 128.0-2

3 jobs; 0 completed, © removed, 3 idle, 0 running, O held, 0 suspended

HTCondor Mantial: condor <tibmit

Using Batches

* Alternatively, batches can be grouped manually using the
JobBatchName ,ttripute in a submit file:

+JobBatchName = "CoolJobs"

$ condor_q
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice CoolJobs 5/9 11:03 . 3 3 128.0-2

* To see individual jobs, use:
condor_q -nobatch

Estimated end :)

Please consider the rest of the
talk — it has a lot of valuable
tips and useful information -
find 1t In INDICO !

NAF Introduction - hands-on

Hello world job
* Login to ‘your’ workgroupserver aka submit host should be something like ‘naf-<VO>.desy.de’

Clone the repo for the hands-on: git clone https://gitlab.desy.de/christoph.beyer/naf-hands-on
* Change the directory to naf-hands-on

* Have alook at the directory structure

* Change directory to submit_files

* Check the hello-world submit file (hello_world.sub)

* Run the executable on the comand line (./hello_world.sh)

* Use condor_submit hello_world.sub

* Use condor_q to check on your job and condor_history once it has left the queue

* Check the output in log/<jobid.procid.out> (e.g. cat ../log/4485756.0.out)

* Check the log file & the error file

Let’'s do something crazy — alter the queue command to queue 1000 and repeat the other steps

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Page 41

https://gitlab.desy.de/christoph.beyer/naf-hands-on

NAF Introduction - hands-on

Containerized job

* Have a look at containerized hello-world submit file (hello_world_container.sub)
* Change the initialdir to your actual working dir

* Use condor_submit hello_world_container.sub

* Use condor_q to check on your job and condor_history once it has left the queue
* Check the output in log/<jobid.procid.out>

* Nothing spectacular right ? Let’s check if the container really gets started :)

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer") Page 42

NAF Introduction - hands-on

Container sleep job

* Have a look at the sleep_container submit file (sleep_container.sub)
* Use condor_submit sleep_container.sub
* This job is similar to the previous one but it does not produce output, it goes to ‘sleep mode’

* Use condor_q to determine if the job is running, when it is

— Use condor_ssh_to_job <JobID> to ‘jump’ into the sleeping job on the workernode
* Ps-ef| grep <your UID> should reveal if apptainer is actual running your image

* Maybe there is a better way to proove we are inside a container ?

* Use <CTRL> D to leave the container/job slot

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer") Page 43

NAF Introduction - hands-on

More complex job

* We want to transform a collection of pics from ‘.jpg’ to “.tif’ format using the UNIX tool convert in a one-line script called
.JJconvert _pic.sh
* Acollection of pics is in data/image_collection

* Check the script and execute it on one pic :
- ./convert _pic.sh ../data/opo0004 _large.jpg
— You should now find ../data/opo0004 _large.tif
— Delete ../data/opo0004 large.tif or expect one job to falil :)

* Check the submit file convert_pics.sub — there is a nice queue feature in it that creates an array job in a ‘foreach’
style

* You need to change the initial working directory (IWD) — if in doubt what to put type <PWD> and use the output
* Run condor_submit convert_pics.sub
* Use condor_q to check the progress and the job structure (array job)

* Use Is../data/ to check the created converted images

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer") Page 44

NAF Introduction - hands-on

Impossible job

* Use condor_submit impossible.sub
* Use condor_q -analyze <jobid> - are there possible machine candidates for this job ?

* Use condor_q -better-analyze <jobid> - what does the job request and why is it failing ?

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer") Page 45

NAF Introduction - hands-on

Impossible job

* Use condor_submit impossible.sub
* Use condor_q -analyze <jobid> - are there possible machine candidates for this job ?

* Use condor_q -better-analyze <jobid> - what does the job request and why is it failing ?

* Solution: The job requests 300 CPUS which is above the number of CPUS provided per machine

DESY. | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer") Page 46

Backup slides - rest of the
Introduction talk

Very worthwhile !

Organizing Jobs

Shared Files

* HTCondor can transfer an entire directory or
all the cicontehntls c(]l)f a directory submit dir)/
* transfer whole directory f \

transfer_input_files = shared

job.submit

* transfer contents only shared/
transfer_input_files = shared/ reference.db
parse.py
* Useful for jobs with many shared files; analyze.py

. . . 1 1 .L .
transfer a directory of files instead of listing Tings. confic

files individually \ J

Use Sub-Directories for File Type

° . . . bmit_dir)/
Create sub-directories* and use paths in the ~ (*20 =40

submit file to separate input, error, log, and ﬁob.submit \

. analyze.exe
- output files. £ile0. out
job.submit £ilel.out
executable = analyze.exe file2.out
arguments = file$(Process).in file$(ProcId).out input/
transfer_input_files = input/file$(ProcId).1in fileO.in
filel.in
log = log/job$(ProcId). log [file2.1in J
log/
gqueue 3 job0O. log
jobl. log

i:m)

InitialDir

* Change the submission directory for each job using initialdir
* Allows the user to organize job files into separate directories.
* Use the same name for all input/output files

* Useful for jobs with lots of output files

VLIV N VNS VAN IV R N Y

BEBBP

job0 job1 job2 job3 job4

Box by Alice Design from the Noun Project

Separate Jobs with InitialDir

(submit_dir)/

;

\

job.submit
analyze.exe

N

job0/

(file.in)
job. log
job.err

QSIE}e.out</

jobl1/

[file.in
job. log
job.err

file.out

- J

job2/

(file.in)
job. log
job.err

\»file.out</

job.submit

~

executable =
initialdir =
arguments = file.in file.out
transfer_input_files = file.1in

log =
error

job. log
= job.err

queue 3

analyze.exe
job$(ProcId)

-

\

Executable should be
in the directory with
the submit file, *not*
in the individual job

directories

~

y

Output Handling

* Only transfer back specific files or directories from the job’s execut
usingtranster_ouput_files

* rename witfsransfer_output_remaps

transfer_output_files = results-final.dat, logs

transfer_output_remaps = "results-final.dat=results.dat"
(submit_dir)/ (execute_dir)/
// \\ //condor_exec.exe \\
results-tmp-01.dat
results.dat results-tmp-02.dat
logs/ results-tmp-03.dat
results-final.dat

\\ logs/ //

Other Submission Methods

* What if your input files/directories aren't numbere® fiadh-1)?
* There are other ways to submit many jobs!

Photo by-Andrew Taoskin-on Flickr, CC-BY-SA

Submitting Multi

ple Jobs

* Replacing single job inpu

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

queue 1

* with a variable of choice

executable = compare_states
arguments = $(infile) us.dat $(infile).out

transfer_input_files = us.dat, $(infile)

queue ...

Possible Queue Statements

matching ... queue infile matching *.dat
pattern
in ... list C i ' '
gueue infile in (wi.dat ca.dat ia.dat)
from ... file : : '
gueue infile from state_list.txt :
wi.dat
ca.dat
ia.dat
state_list.txt
‘r‘nultiplf infile = wi.dat
queue queue 1
statements infile = ca.dat
queue 1
infile = ia.dat
queue 1

Possible Queue Statements

TEHETIG) co queue infile matching *.dat
pattern
in ... list ey i ' '
gueue infile in (wi.dat ca.dat ia.dat)
from ... file . oo i
gueue infile from state_list.txt :
wl.dat
ca.dat
la.dat
state_list.txt
STUMp% infile = wi.dat
queue queue 1
statements infile = ca.dat
queue 1 1
infile = ia.dat /
queue—1

Queue Statement Comparison

matching .. Natural nested looping, minimal programming, use optional
pattern “files” and “dirs” keywords to only match files or directories
Requires good naming conventions,
in .. list Supports multiple variables, all information contained in a single
file, reproducible
Harder to automate submit file creation
from .. file Supports multiple variables, highly modular (easy to use one
submit file for many job batches), reproducible
Additional file needed
multiple Not recommended. Can be useful when submitting job batches
queue where a single (non-file/argument) characteristic is changing
statements

Using Multiple Variables

* The "from" syntax supports using multiple variables from a list.

job.submit job_1list.txt
executable = compare_states wi.dat, 2010
arguments = -y $(option) -i $(file) wi.dat, 2015

ca.dat, 2016
should_transfer_files = YES ca.dat, 2015
when_to_transfer_output = ON_EXIT la.dat, 2010
transfer_input_files = $(file) la.dat, 2015
queue file,option from job_list.txt

Other Features

* Match existing files or directories:

gueue 1nput matching files *.dat

gqueue directory matching dirs job*

* Submit multiple jobs with same input data

gqueue 10 input matching files *.dat

* Use other automatic variabfds>tep)

arguments = -i $(input) -rep $(Step)
gueue 10 input matching files *.dat

(60 second) Pause

Questions so far?

Job Matching and
Class Ad Attributes

The Central Manager

* HTCondor matches jobs with computers via a “central manager”.

HICONQY [\@
® ec t@
A

TN

E \

—_ \%%ecute
—

central manager E&A

execute

manager by Gan Khoon Lay from the Noun Project

Class Ads

TCondor stores a list of information
pout each job and each computer.

nis information is stored as a “Class Ad”

o
d
T
C

ass Ads have the format:
e AttributeName —value

’\

can be a boolean,
number, or string

Photo by-Wherda-Arsianto on-Unsplash

Job Class Ad

RequestCpus = 1

Err = "job.err"
WhenToTransferOutput = "ON_EXIT"
executable = compare_states .
arguments = wi.dat us.dat wi.dat.out TargetType = "MaChlne"
should_transfer_files = YES Cmd =
ransfer_input_files = us.dat, wi.da .
uhen to, Transfer output < ONEXIT "/home/alice/tests/htcondor_week/compare_states"
log :job.lgg JObUnlverse - 5
output = job.out .
orror = job.err Iwd = "/home/alice/tests/htcondor_week"
request_cpus = 1 —> RequestDisk = 20480
request_disk = 20MB
request_memory = 20MB N\umJobStarts = 0
queue 1 WantRemoteIO = true
" TransferInput = "us.dat,wi.dat"
_ _ MyType = "Job"
HTCondor configuration* out = "job.out"
UserLog =

"/home/alice/tests/htcondor_week/job. lLog"
RequestMemory = 20

Computer "Machine” Class Ad

HasFileTransfer = true
DynamicSlot = true
TotalSlotDisk = 4300218.0
TargetType = "Job"
TotalSlotMemory = 2048
Mips = 17902
Memory = 2048
UtsnameSysname = "Linux"
=> MAX_PREEMPT = (3600 * 72)
Requirements = (START) && (
IsvalidCheckpointPlatform) && (
WithinResourcelLimits)
HTCondor configuration OpSysMajorver = 6
TotalMemory = 9889
HasGluster = true
OpSysName = "SL"
HasDocker = true

+

Job Matching

* On a reqgular basis, the central manager reviews Job and Machine
Class Ads and matches jobs to computers.

® Vx

HTCondF R
® exedcutd® Vx
= — ﬁ 4
— @ &Gecute

&b
central manager A

execute

Job Execution

* (Then the submit and execute points communicate directly.)

® Vx

submit B@Z
execyt€® Vx
— e,
p— @\%(GECLI'(G

= N

execute

Class Ads for People

* Class Ads also provide lots of useful information about jobs and
computers to HTCondor users and administrators

PhAatn hys PRarmman Kraftr Aan | lnenlach

Finding Job Attributes

* Use the “long” option fepndor_q
condor_q -1l JobId

$ condor_g -1 128.0

WhenToTransferOutput = "ON_EXIT"

TargetType = "Machine"

Cmd = "/home/alice/tests/htcondor_week/compare_states"”
JobUniverse = 5

Iwd = "/home/alice/tests/htcondor_week"

RequestDisk = 20480

NumJobStarts = 0

WantRemoteIO = true

OnExitRemove = true

TransferInput = "us.dat,wi.dat"

MyType = "Job”

UserLog = "/home/alice/tests/htcondor_week/job. log"
RequestMemory = 20

Useful Job Attributes

* UserLog: |ocation of job log

* Iwd. pjtial Working Directory (i.e. submission directory) on submit
node

* MemoryUsage: maximum memory the job has used

* RemoteHost: \yhere the job is running
-ClusterId,ProcID’JobBatchName

*...and more (see the-manual)

Displaying Job Attributes

* Use the “auto-format” option:

condor

g [U/C/J] -af Attributel Attribute2

$ condor_q -af ClusterId ProcId RemoteHost MemoryUsage

1725
1725
1725
1725
1861
1863
1864
1865
1871

116 slotl_1@e092.chtc.wisc.edu 1709
118 slotl _2@e093.chtc.wisc.edu 1709
137 slotl_8@el25.chtc.wisc.edu 1709
139 slotl _7@el21.chtc.wisc.edu 1709
slotl _5@c025.chtc.wisc.edu 196
slotl_3@atlasl10.chtc.wisc.edu 269
slotl_25@e348.chtc.wisc.edu 245
slotl _23@e305.chtc.wisc.edu 196
slotl_6@el76.chtc.wisc.edu 220

Selecting Job Attributes

* Use the "constraint" option, along with an expression for what jobs

you want to look at:
condor_q [U/C/J] -constraint 'Attribute >/</== value'

$ condor_q -constraint 'JobBatchName == "CoolJobs"'

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CoolJobs 5/9 11:03 . 3 3 128.0-2

Other Displays

* See the whole queue (all users, all jobs)
condor_g -all

$ condor_g -all

-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?...
OWNER BATCH_ NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
alice DAG: 128 5/9 02:52 082 . 1000 18888976.

bob DAG: 139 5/9 09:21 _ 89 180 18910071.
alice DAG: 5/9 10:31 1 1000 18911030.
bob DAG: 5/9 10:51 18913051,
bob CMD: : 5/9 10:55 18913029.

alice CMD: 5/9 10:57 18913030.

Class Ads for Computers

* as€ondor_gjs g jopstondor_status jsto computers (or “machines”)

$ condor_status

Name OpSys Arch State
Activity LoadAv Mem Actvty

slot1@c001.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.000 673

25+01

slotl_1@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

slotl _2@cO01.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

slotl_3@cO01.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+00

slotl_4@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+14

slot1@c002.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 1.000 2693 19+19

slotl_1@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+04
slotl_2@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1@c004.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.010 645 25+05
slotl_1@c004.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

Total Owner Claimed Unclaimed Matched Preempting
Backfill Drain

X86_64/LINUX 10962
X86_64/WINDOWS 2

Machine Attributes

* To summarize, use the "-compact" option
condor_status -compact

$ condor_status -compact

Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST
e007.chtc.wisc.edu xX64/SL6 8 8 23.46 0 0.00 1.24 Cb
e008.chtc.wisc.edu xX64/SL6 8 8 23.46 0 0.46 .97 Cb
e009.chtc.wisc.edu xX64/SL6 11 16 23.46 5 0.00 .81 **
e010.chtc.wisc.edu xX64/SL6 8 8 23.46 0 4.46 .76 Cb
matlab-build-1.chtc.wisc.edu x64/SL6 1 12 23.45 11 13.45 .00 **
matlab-build-5.chtc.wisc.edu x64/SL6 (0] 24 23.45 24 23.45 .04 Ui
meml.chtc.wisc.edu xX64/SL6 24 80 .67 8 0.17 .60 **

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

X64/SL6 10416 0] 0984 427 0
x64/WinVista 2 2 0] 0] 0]

Total 10418 2 9984 0]

Machine Attributes

* Use same options §endor_g.
condor_status -1 Slot/Machine

condor_status [Machine] -af Attributel Attribute2

$ condor_status -1 slotl _1@c00l1.chtc.wisc.edu
HasFileTransfer = true

COLLECTOR_HOST_STRING = "cm.chtc.wisc.edu”
TargetType = "Job”

TotalTimeClaimedBusy = 43334c001.chtc.wisc.edu
Mips = 17902

MAX_PREEMPT = (3600 * (72 - 68 * (WantGlidein =7?= true)))

Requirements = (START) && (IsValidCheckpointPlatform) && (WithinResourcelLimits)
State = "Claimed"

OpSysMajorVer = 6

OpSysName = "SL”

Testing and Troubleshooting

What Can Go Wrong?

* Jobs can go wrong “internally”:
* something happens after the executable begins to run

*Jobs can go wrong from HTCondor’s perspective:
* Ajob can't be started at all,
* Uses too much memory,
* Has a badly formatted executable,
* And more...

Reviewing Failed Jobs

* Ajob's log, output and error files can provide valuable information
troubleshooting

Log Output Error

 When jobs were Any “print” or “display” Captured by the operating
submitted, started, and | information from your system
stopped program

* Resources used

» EXxit status

 Where job ran

* Interruption reasons

Reviewing Recent Jobs

* To review a large group of jobs at onc&sQR@or _history
[U/C/J]

* As€ondor_{g s tg the presengondor_history js g the past

$ condor_history alice

ID OWNER SUBMITTED RUN_TIME
189.1012 alice 5/11 09:52 0+00:07:
189.1002 alice 5/11 09:52 ORJOIOMCLS
189.1081 alice 5/11 09:52 0+00:03:
189.944 alice 5/11 09:52 0+00:11:
189.659 alice 5/11 09:52 0+00:26:

0p]
-

COMPLETED CMD

5/11 16:00 /home/alice
5/11 16:00 /home/alice
5/11 16:00 /home/alice
5/11 16:00 /home/alice
5/11 16:00 /home/alice
5/11 16:00 /home/alice
5/11 15:59 /home/alice
5/11 15:59 /home/alice
5/11 15:59 /home/alice
5/11 15:59 /home/alice
5/11 15:59 /home/alice

189.653 alice 5/11 09:52 0+00:27:
189.1040 alice 5/11 09:52 0+00:05:
189.1003 alice 5/11 09:52 0+00:07:
189.962 alice 5/11 09:52 0+00:09:
189.961 alice 5/11 09:52 0+00:09:
189.898 alice 5/11 09:52 0+00:13:

OO0 O0OO0O0O0O0O0OO0

“Live” Troubleshooting

*To Iog in to a job where it is running, use:
condor_ssh_to_job JobId

$ condor_ssh_to_job 128.0
Welcome to slotl 31@e395.chtc.wisc.edu!

Your condor job is running with pid(s) 3954839.

Held Jobs

* HTCondor will put your job on hold
there's something YOU need to fix.

* Ajob that goes on hold is interrupte
(all progress is lost) and kept from
running again, but remains in the
gueue in the "H" state.

$ condor_q -nobatch

ID OWNER SUBMITTED RUN_TIME RI SIZE CMD
128.0 alice 5/9 11:09 0+00:00: 0.0 analyze.exe

1 jobs; 0 completed, 0 removed, 0 idle, O running, 1 held, 0 suspended

Photo by-Fim-Gouw on-Unsplash

Diagnosing Holds

* If HTCondor puts jobs on hold, it provides a hold reason, which car
viewed with:

condor_q -hold

$ condor_q -hold

ID OWNER HELD_SINCE HOLD_REASON

125.0 bob 5/09 17:12 Error from slotl _1@wid-003.chtc.wisc.edu: Job has
gone over memory limit of 2048 megabytes.

128.0 alice 5/11 12:06 Error from slotl 11@el38.chtc.wisc.edu: STARTER
at 128.104.101.138 failed to send file(s) to <128.104.101.92:9618>; SHADOW at

128.104.101.92 failed to write to file /home/alice/Test_18925319_16.err:
(errno 122) Disk quota exceeded

131.0 bob 5/12 09:02 Error from slotl_38@e270.chtc.wisc.edu: Failed
to execute '/var/lib/condor/execute/slotl/dir_2471876/condor_exec.exe' with
arguments 2: (errno=2: 'No such file or directory')

Common Hold Reasons

* Job has used more memory than requested
* Incorrect path to files that need to be transferred

* Badly formatted bash scripts (have Windows instead of Unix line
endings, are missing a header)

* Submit directory is over quota
* The administrator has put your job on hold

Fixing Holds

* Job attributes can be edited while jobs are in the queue using:
condor_qedit [U/C/J] Attribute Value

$ condor_gedit 128.0 RequestMemory 3072

Set attribute "RequestMemory".

* If a job has been fixed and can run again, release it with:
condor_release [U/C/J]

$ condor_release 128.0
Job 18933774.0 released

HTCondor Manual: condor qgedit

' I = s

Holding or Removing Jobs

* If you know your job has a problem and it hasn’t yet completed, yo
can:
* Place it on hold yourself, vfigidor_hold [U/C/J]

$ condor_hold bob
All jobs of user "bob" have been held

$ condor_hold 128
All jobs in cluster 128 have been held

$ condor_hold 128.0
Job 128.0 held

* Remove it from the queue, u§ifgdor_rm [U/C/J]

HTCondor Manual: condor hold

Job States, Revisited

condor_ | Running
submit (R)

N Completed
(C)

in the queue leaving the queue

Job States, Revisited

condor_ | Running
submit

Completed

7

(C)

condor_release

in the queue leaving the queue

Job States, Revisited*

condor_ | Running
submit

condor_release

Completed

l

in the queue

condor_q

7

(C)

Removed

(X)

y

condor_histor

leaving the queue

Use Cases and
HTCondor Features

Interactive Jobs

* An interactive job proceeds like a normal batch job, but opens a ba
session into the job’s execution directory instead of running an

executable.
condor submit -i submit file

$ condor_submit -1 interactive.submit
Submitting job(s).
1 job(s) submitted to cluster 18980881.

Waiting for job to start...
Welcome to slotl 9@el184.chtc.wisc.edu!

* Useful for testing and troubleshooting

Self-Checkpointing

° By default, a job that is interrupted will start from the
beginning if it is restarted.

* It is possible to implement self-checkpointing, which will
allow a job to restart from a saved state if interrupted.

* Self-checkpointing is useful for:

*very long jobs
° running on opportunistic resources.

Self-Checkpointing How-To

* Edit executable:
* Save intermediate states to a checkpoint file
* Always check for a checkpoint file when starting

* Add HTCondor option that a) saves all intermediate/output files frc
the interrupted job and b) transfers them to the job when HTCond:
runs it again

when_to_transfer_output = ON_EXIT_OR_EVICT

Job Universes

* HTCondor has different “universes” for runn
speC|aI|zed job types

* HTCondor Manual: Choosing an HTCondor Univ{s

* Vanilla (default)
* good for most software

* HTCondor Manual: Vanilla Universe

* Set in the submit file using:

universe = vanilla

Photo on-needpix.com

Other Universes

* Docker
* Run jobs inside a Docker container

* HTCondor Manual; Docker Universe Apnlications

Execute Node

Docker Container

universe = docker (execute_dir)/
docker_image = ubuntu:trusty ;i'f‘g:;e—“ates
by default the docker image us.dat
is pulled from DockerHub iiﬁﬁﬂi

wi.dat.out

Other Universes

*Java *VM

* Built-in Java support * Run jobs inside a virtual machine
* Local * Parallel

* Run jobs on the submit node * Used for coordinating jobs across
* Standard multiple servers (e.g. MPI code)

* Not necessary for single server

* (No longer supported) multi-core jobs

* For C code compiled against
HTCondor libraries

Multi-CPU and GPU Computing

* Jobs that use multiple cores on a single computer can be r
in the vanilla universe (parallel universe not needed):

request_cpus = 16

* If there are computers with GPUs, request them with:

request_gpus = 1

Automation

Automation

* After job submission,
HTCondor manages jobs
based on its configuration

* You can use options that will
customize job management
even further

* These options can automate
when jobs are started,
stopped, and removed.

Photo by Mixabest on-WikiMedia, CC-BY-SA

Retries

* Problem: a small number of jobs fail; if they run again, they compl
successfully.

* Solution: If the job exits with an error, leave it in the queue to run
again. This is done via the automatic ofj&itaetries,

max_retries = 5

Limiting Jobs

* Problem: Submitting more than a few thousand jobs to the queue

once

* Solution: Use tHE&X_1d L€ gntion. This limits the number of jobs
submitted at one time, but allows there to always be idle jobs read

to run.

max_1idle = 1000

Useful Job Attributes for Automation

* CurrentTime:. cyrrent time
* EnteredCurrentStatus. yime of last status change

* Ex1tCode: the exit code from the job

* HoldReasonCode: nymper corresponding to a hold reason

* NumJobStarts: how many times the job has gone from idle to
running

* JobStatus: hymbper indicating idle, running, held, etc.

Automatically Hold Jobs

* Problem: Your job should run in 2 hours or less, but a few jobs “ha
randomly and run for days

* Solution: Put jobs on hold if they run for over 2 hours, using a

[job is running }

periodic_hold = (JobStatus ==2) &&
((CurrentTime - EnteredCurrentStatus) > (60 * 60 * 2))

How long the job has been [2 hours]
running, in seconds

Automatically Release Jobs

* Problem (related to previous): A few jobs are being held for runnin
long; they will complete if they run again.

* Solution: automatically release those held jobs with a

[job is held J

periodic_release = (JobStatusk;: 5) &&

(HoldReasonCode == 3) && (NumJobStarts < 5)

by periodic_hold less than 5 times

[job was put on hold J [job has started running J

Automatically Remove Jobs

* Problem: Jobs are repetitively failing

* Solution: Remove jobs from the queue uBRIGtd1c_remove
statement

periodic_remove = (NumJobsStarts > 5)

AN

{job has started running J

more than 5 times

Dynamically Request Memory

* Problem: a batch of jobs uses a wide variety of memory; many job:
only need 256MB, but some need up to 2 GB.

* Solution: Use a dynamic memory request.

[if the job has run before... J
request_memory = 1ifthenelse(MemoryUsage =!= undefined,
MAX({MemoryUsage * 3/2, 256})f\\\\\\\\\\

256) \ (...request either a multiple of the memory
used by a previous run, or the default,
whichever is larger.

[else, use the default. J

Workflows

* Problem: Want to submit jobs in a

particular order, with dependencies | }

between groups of jobs {
* Solution: Write a DAG

* To learn about this, stay for the next
talk,-DAGMan: HTCondor anc
Workflows by Lauren Michael. combine

Final Questions?

VS-A9-DD ‘D3t o ||rgatep-Aq 0joyd

	Presentation Title (2)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Heading
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Chapter Title
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109

