
Using the NAF

A short introduction for beginner

Beyer Christoph
Hamburg, 6-11-2025

An Introduction to
Using HTCondor

Christina Koch
HTCondor Workshop Autumn 2020

September 21, 2020

What is HTCondor?
• Software that

schedules and runs
computing tasks on
computers

Ph
ot

o
by

 Jo
ha

nn
a

St
ro

dt
 o

n
W

ik
iM

ed
ia

, C
C-

BY
-S

A

How It Works
• Submit tasks to a queue (on a submit point)
• HTCondor schedules them to run on computers (execute points)

submit

tasks

queue

Po
st

 It
 b

y
Ar

ia
nn

a
G

al
im

be
rt

i;
pa

pe
rs

 b
y

ja
bb

ar
; M

at
h

by
 T

ur
kk

ub
 fr

om
 th

e
N

ou
n

Pr
oj

ec
t

execute

execute

execute

HTCondor on Many Computers

submit

tasks

queue

execute

execute

execute

co
m

pu
te

r t
ow

er
 b

y
Ra

lf
Sc

hm
itz

er
 fr

om
 th

e
N

ou
n

Pr
oj

ec
t

Why HTCondor?
• HTCondor manages and runs work on your behalf.
• Manage shared resources among users:

• Schedule tasks on a single computer to manage computer
capacity.

• Schedule tasks on a group* of computers (which may/may not
be directly accessible to the user).

• Schedule tasks submitted by multiple users on one or more
computers.

*in HTCondor-speak, a “pool”

HTCondor Jobs

• HTCondor schedules and executes
Jobs

• What is a Job?
• A ‘Job’ is a single computational task

1. Input Data

2. Executable (program)

3. Output Data

• Executable must be runnable from
the command line without any
interactive input

DESY. Page 8| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Sources of ‘pizza ingredients’ in the NAF
Shared filesystems are part of the design approach

● The login node (called WGS) is the place where you login (usually through SSH) in order to submit and
control your jobs

● The WGS is named as your VO e.g. naf-cms.desy.de and the actual, physical server is chosen in a round-
robin mechanism

● The WGS is setup equally to the workernode that later will execute your program, including all the fileservice
mounts, anything that runs ‘here’ and is accessible will run and be accessible ‘there’ (on the target worker
node) without further thinking or action !

● Executables and data live in the shared FS, smaller executable can be transferred with the job for strategical
reasons

● No batchsystem will create directories on your behalf, if you rely on a certain dir-structure e.g. for your output
you need to create the structure in forehand

Describing an HTCondor Job
executable = sleep_runtime.sh
Arguments = 600

request_cpus = 1
request_disk = 50MB
request_memory = 20MB

queue 1

CAT-Analysis.sub

Describe an HTCondor job
with the Job Description
Language (JDL)

output = $(Cluster).$(Process).out
error = $(Cluster).$(Process).err
log = $(Cluster).$(Process).log

Describing an HTCondor Job
executable = sleep_runtime.sh
arguments = 600

output = $(Cluster).$(Process).out
error = $(Cluster).$(Process).err
log = $(Cluster).$(Process).log

request_cpus = 1
request_disk = 50MB
request_memory = 20MB

queue 1

CAT-Analysis.sub

List the executable and
arguments for HTCondor to run
at the EP like how you would
run the executable by hand

$ sleep_runtime.sh 600

Describing an HTCondor Job
executable = sleep_runtime.sh
arguments = 600

output = $(Cluster).$(Process).out
error = $(Cluster).$(Process).err
log = $(Cluster).$(Process).log

request_cpus = 1
request_disk = 50MB
request_memory = 20MB

queue 1

CAT-Analysis.sub

• log - Generated by HTCondor to
track job progress from key
events in the jobs lifetime

• output - File that captures the
jobs STDOUT

• error - File that captures the
jobs STDERR

Describing an HTCondor Job

request_cpus = 1
request_disk = 50MB
request_memory = 20MB

queue 1

CAT-Analysis.sub

• Request the
appropriate
resources for
your job to run.

• queue - keyword
indicating
“create a job.”

output = $(Cluster).$(Process).out
error = $(Cluster).$(Process).err
log = $(Cluster).$(Process).log

executable = sleep_runtime.sh
Arguments = 600

Short interlude - live-demo

Resource Requirements

• Jobs are nearly always using a part of a computer, not the whole
thing. EP divides worker node into execute "Slots".

• Very important to request appropriate resources (memory, cpus,
disk) for a job

• Job will likely be enforced to only use what it requests

whole

computer

your request

HTCondor Workshop Autumn 2020

Resource Assumptions
• Try to run default jobs whenever possible in order to use surplus

Quota
IF default resources are not working for your jobtype request
Resources accordingly

• Important to run test jobs and use the log file to request the
right amount of resources:

• requesting too little: causes problems for your and other jobs; jobs
might by held by HTCondor

• requesting too much: jobs will match to fewer “slots”

DESY. Page | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

How should your piece of the pie look – resource requests
Only request what you need and if it’s beyond the default limits

● Request_Runtime = <seconds> → defaults to 3h if not requested

• Request_Memory = <Mbyte> → defaults to 3GB if not requested

• Request_Disk = <kByte> → defaults to 512 MB

• Request_Cpus = <num of cpus> → defaults to 1 if not requested

• Request_GPUs = <num of gpus> → you need a special resource to use GPUS

• (Request_OpSysAndVer = "<OS>" → defaults to RHEL9)

• Check your ressource requests using ‘condor_q <jobid> -af Request<ressource>’ (no ‘_’ here)

• Use same syntax with condor_history for finished jobs

DESY. Page | Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

Lite & bide jobs/ quotas/ priorities
Once you run a lot of jobs this will be a thing

● All jobs in the NAF gets automatically categorized in ‘lite’ and ‘bide’ jobs

● Lite jobs are submissions with no special resource requests (diskspace as an exception) they will run 3h
with 1 core and 3GB memory

● Lite jobs are able to run on nearly the whole pool, outside of your groups quota (surplus)

● Bide jobs are jobs with ‘bigger’ specific resource requests and are bound to your groups quota, if the quota is
tight it will take time to get these started also bigger pieces of ‘the pie’ may be harder to find even if quota and
priority are in your favor

● Groupquotas are fix for ‘bide’ jobs and elastic for ‘lite’ jobs

● Inside the groups there is no quotation (as in ‘per user’) instead there is a priority system based on previous
and current usage called fairshare

● Use ‘condor_userprio.desy’ (!) to check your current usage, priority etc.

Submitting and Monitoring Jobs
• To submit a job/jobs:

condor_submit submit_file_name

• To monitor submitted jobs, use:
condor_q

$ condor_submit job.submit
Submitting job(s).
1 job(s) submitted to cluster 128.

$ condor_q
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/01/19 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice ID: 128 5/9 11:09 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit

More about condor_q

• By default condor_q shows:
• user’s job(s) only (as of 8.6)
• jobs summarized in “batches” (as of 8.6)

• Constrain with username, ClusterId or full JobId , which
will be denoted [U/C/J] in the following slides.

$ condor_q
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/09/19 11:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice ID: 128 5/9 11:09 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterId .ProcId

More about condor_q

• To see individual job information, use:
condor_q -nobatch

• We will use the -nobatch option in the following slides to see
extra detail about what is happening with a job

$ condor_q -nobatch
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Job Idle
$ condor_q -nobatch
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

Submit Node

job.submit
compare_states
wi.dat
us.dat
job.log

(submit_dir)/

Job Starts

compare_states
wi.dat
us.dat

$ condor_q -nobatch
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 < 0 0.0 compare_states wi.dat us.dat w

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Submit Node

job.submit
compare_states
wi.dat
us.dat
job.log

(submit_dir)/

Execute Node

compare_states
wi.dat
us.dat

(execute_dir)/

Job Running
$ condor_q -nobatch

-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:01:08 R 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Submit Node

job.submit
compare_states
wi.dat
us.dat
job.log

(submit_dir)/

Execute Node

compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

(execute_dir)/

Job Completes

stderr
stdout

wi.dat.out

$ condor_q -nobatch
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128 alice 5/9 11:09 0+00:02:02 > 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Submit Node

job.submit
compare_states
wi.dat
us.dat
job.log

(submit_dir)/

Execute Node

compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

(execute_dir)/

Job Completes (cont.)
$ condor_q -nobatch

-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

Submit Node

job.submit
compare_states
wi.dat
us.dat
job.log
job.err
job.out
wi.dat.out

(submit_dir)/

000 (7195807.000.000) 05/19 14:30:18 Job submitted from host:
<128.105.244.191:9618 ...>
......
040 (7195807.000.000) 05/19 14:31:55 Started transferring input files

Transferring to host: <128.105.245.85:9618 ...>
...
040 (7195807.000.000) 05/19 14:31:55 Finished transferring input files
...
001 (7195807.000.000) 05/19 14:31:56 Job executing on host:
<128.105.245.85:9618? ...>
...
005 (7195807.000.000) 05/19 14:35:56 Job terminated.

(1) Normal termination (return value 0)

...

Partitionable Resources : Usage Request Allocated
Cpus : 0 1 1
Disk (KB) : 26 1024 995252

Memory (MB) : 1 1024 1024

Log File

Job States

condor_
submit

Idle
(I)

Running
(R)

Completed
(C)

transfer
executable

and input to
execute

node

transfer
output

back to
submit node

in the queue leaving the queue

Assumptions
• Aspects of your submit file may be dictated by infrastructure and

configuration.
• For example: file transfer

• previous example assumed files would need to be transferred between
submit/execute

• not the case with a shared filesystem = true for NAF

should_transfer_files = NO

should_transfer_files = YES

Submitting Multiple Jobs
with HTCondor

Why do we care?
• Run many independent jobs...

• analyze multiple data files
• test parameter or input

combinations
• and more!

Why do we care?
• Run many independent jobs...

• analyze multiple data files
• test parameter or input

combinations
• and more!

• ...without having to:
• start each job individually
• create separate submit files for

each job

Many Jobs, One Submit File
• HTCondor has built-in

ways to submit
multiple independent
jobs with one submit
file.

Photo by Joanna Kosinska on Unsplash

Numbered Input Files
• Goal: create 3 jobs that each analyze a different input file.

executable = analyze.exe
arguments = file0.in file0.out
transfer_input_files = file0.in

log = job.log
output = job.out
error = job.err

queue

job.submit
(submit_dir)/

analyze.exe
file0.in
file1.in
file2.in

job.submit

Multiple Jobs, No Variation
• This file generates 3 jobs, but doesn’t use multiple inputs and will

overwrite outputs

executable = analyze.exe
arguments = file0.in file0.out
transfer_input_files = file0.in

log = job.log
output = job.out
error = job.err

queue 3

job.submit
(submit_dir)/

analyze.exe
file0.in
file1.in
file2.in

job.submit

Automatic Variables
• Each job’s
ClusterId and
ProcId can be
accessed inside the
submit file using:

$(ClusterId)

$(ProcId)

queue N

128

128

128

0

1

2

ClusterId ProcId

...

128 N-1

...

Job Variation
• How to uniquely identify each job (filenames, log/out/err names)?

executable = analyze.exe
arguments = file0.in file0.out
transfer_input_files = file0.in

log = job.log
output = job.out
error = job.err

queue 3

job.submit
(submit_dir)/

analyze.exe
file0.in
file1.in
file2.in

job.submit

Using $(ProcId)
• Use the $(ClusterId), $(ProcId) variables to provide

unique values to jobs.*

executable = analyze.exe
arguments = file$(ProcId).in file$(ProcId).out
transfer_input_files = file$(ProcId).in

log = job-$(ClusterId)-$(ProcId).log
output = job-$(ClusterId)-$(ProcId).out
error = job-$(ClusterId)-$(ProcId).err

queue 3

job.submit
(submit_dir)/

analyze.exe
file0.in
file1.in
file2.in

job.submit

Submit and Monitor (review)
condor_submit submit_file_name
condor_q

• Jobs in the queue will be grouped in batches (in this case by cluster
number)

$ condor_submit job.submit
Submitting job(s).
3 job(s) submitted to cluster 128.

$ condor_q
-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?... @ 05/09/19 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice ID: 128 5/9 11:03 _ _ 3 3 128.0-2

3 jobs; 0 completed, 0 removed, 3 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit

Using Batches
• Alternatively, batches can be grouped manually using the
JobBatchName attribute in a submit file:

• To see individual jobs, use:
condor_q -nobatch

+JobBatchName = "CoolJobs"

$ condor_q
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CoolJobs 5/9 11:03 _ _ 3 3 128.0-2

Estimated end :)

Please consider the rest of the
talk – it has a lot of valuable
tips and useful information –
find it in INDICO !

DESY. Page 41

NAF Introduction - hands-on
Hello world job

• Login to ‘your’ workgroupserver aka submit host should be something like ‘naf-<VO>.desy.de’

• Clone the repo for the hands-on: git clone https://gitlab.desy.de/christoph.beyer/naf-hands-on

• Change the directory to naf-hands-on

• Have a look at the directory structure

• Change directory to submit_files

• Check the hello-world submit file (hello_world.sub)

• Run the executable on the comand line (./hello_world.sh)

• Use condor_submit hello_world.sub

• Use condor_q to check on your job and condor_history once it has left the queue

• Check the output in log/<jobid.procid.out> (e.g. cat ../log/4485756.0.out)

• Check the log file & the error file

• Let’s do something crazy – alter the queue command to queue 1000 and repeat the other steps

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

https://gitlab.desy.de/christoph.beyer/naf-hands-on

DESY. Page 42

NAF Introduction - hands-on
Containerized job

• Have a look at containerized hello-world submit file (hello_world_container.sub)

• Change the initialdir to your actual working dir

• Use condor_submit hello_world_container.sub

• Use condor_q to check on your job and condor_history once it has left the queue

• Check the output in log/<jobid.procid.out>

• Nothing spectacular right ? Let’s check if the container really gets started :)

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

DESY. Page 43

NAF Introduction - hands-on
Container sleep job

• Have a look at the sleep_container submit file (sleep_container.sub)

• Use condor_submit sleep_container.sub

• This job is similar to the previous one but it does not produce output, it goes to ‘sleep mode’

• Use condor_q to determine if the job is running, when it is

– Use condor_ssh_to_job <JobID> to ‘jump’ into the sleeping job on the workernode
• Ps -ef | grep <your UID> should reveal if apptainer is actual running your image

• Maybe there is a better way to proove we are inside a container ?

• Use <CTRL> D to leave the container/job slot

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

DESY. Page 44

NAF Introduction - hands-on
More complex job

● We want to transform a collection of pics from ‘.jpg’ to ‘.tif’ format using the UNIX tool convert in a one-line script called
 ./convert_pic.sh

● A collection of pics is in data/image_collection

● Check the script and execute it on one pic :

– ./convert_pic.sh ../data/opo0004_large.jpg

– You should now find ../data/opo0004_large.tif

– Delete ../data/opo0004_large.tif or expect one job to fail :)

● Check the submit file convert_pics.sub – there is a nice queue feature in it that creates an array job in a ‘foreach’
style

● You need to change the initial working directory (IWD) – if in doubt what to put type <PWD> and use the output

● Run condor_submit convert_pics.sub

● Use condor_q to check the progress and the job structure (array job)

● Use ls ../data/ to check the created converted images

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

DESY. Page 45

NAF Introduction - hands-on
Impossible job

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

● Use condor_submit impossible.sub

● Use condor_q -analyze <jobid> - are there possible machine candidates for this job ?

● Use condor_q -better-analyze <jobid> - what does the job request and why is it failing ?

DESY. Page 46

NAF Introduction - hands-on
Impossible job

● Use condor_submit impossible.sub

● Use condor_q -analyze <jobid> - are there possible machine candidates for this job ?

● Use condor_q -better-analyze <jobid> - what does the job request and why is it failing ?

● Solution: The job requests 300 CPUS which is above the number of CPUS provided per machine

| Presentation Title | Name Surname, Date (Edit by "Insert > Header and Footer")

● Use condor_submit impossible.sub

● Use condor_q -analyze <jobid> - are there possible machine candidates for this job ?

● Use condor_q -better-analyze <jobid> - what does the job request and why is it failing ?

Backup slides – rest of the
introduction talk

Very worthwhile !

Organizing Jobs

Shared Files
• HTCondor can transfer an entire directory or

all the contents of a directory
• transfer whole directory

• transfer contents only

• Useful for jobs with many shared files;
transfer a directory of files instead of listing
files individually

transfer_input_files = shared/

transfer_input_files = shared

(submit_dir)/

job.submit
shared/

reference.db
parse.py
analyze.py
cleanup.py
links.config

Use Sub-Directories for File Type
• Create sub-directories* and use paths in the

submit file to separate input, error, log, and
output files.

executable = analyze.exe
arguments = file$(Process).in file$(ProcId).out
transfer_input_files = input/file$(ProcId).in

log = log/job$(ProcId).log

queue 3

job.submit

(submit_dir)/

* must be created before the job is submitted

job.submit
analyze.exe
file0.out
file1.out
file2.out
input/
file0.in
file1.in
file2.in

log/
job0.log
job1.log
job2.log

InitialDir
• Change the submission directory for each job using initialdir
• Allows the user to organize job files into separate directories.
• Use the same name for all input/output files
• Useful for jobs with lots of output files

job0 job1 job2 job3

Bo
x

by
 A

lic
e

D
es

ig
n

fr
om

 th
e

N
ou

n
Pr

oj
ec

t

job4

Separate Jobs with InitialDir

executable = analyze.exe
initialdir = job$(ProcId)
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
error = job.err

queue 3

job0/
file.in
job.log
job.err
file.out

job1/
file.in
job.log
job.err
file.out

job2/
file.in
job.log
job.err
file.out

job.submit

(submit_dir)/

Executable should be
in the directory with
the submit file, *not*
in the individual job

directories

job.submit
analyze.exe

Output Handling
• Only transfer back specific files or directories from the job’s execution

using transfer_ouput_files
• rename with transfer_output_remaps

transfer_output_files = results-final.dat, logs
transfer_output_remaps = "results-final.dat=results.dat"

(submit_dir)/ (execute_dir)/

results.dat
logs/

condor_exec.exe
results-tmp-01.dat
results-tmp-02.dat
results-tmp-03.dat
results-final.dat
logs/

Other Submission Methods
• What if your input files/directories aren’t numbered from 0 to(N-1)?
• There are other ways to submit many jobs!

Photo by Andrew Toskin on Flickr, CC-BY-SA

Submitting Multiple Jobs
• Replacing single job inputs

• with a variable of choice

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

queue 1

executable = compare_states
arguments = $(infile) us.dat $(infile).out

transfer_input_files = us.dat, $(infile)

queue ...

Possible Queue Statements
matching ...
pattern

in ... list

from ... file

multiple
“queue”
statements

queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat
ca.dat
ia.dat

state_list.txt

infile = wi.dat
queue 1
infile = ca.dat
queue 1
infile = ia.dat
queue 1

matching ...
pattern

in ... list

from ... file

multiple
“queue”
statements

Possible Queue Statements
queue infile matching *.dat

queue infile in (wi.dat ca.dat ia.dat)

queue infile from state_list.txt
wi.dat
ca.dat
ia.dat

state_list.txt

infile = wi.dat
queue 1
infile = ca.dat
queue 1
infile = ia.dat
queue 1

Not Recommended

matching ..
pattern

Natural nested looping, minimal programming, use optional
“files” and “dirs” keywords to only match files or directories
Requires good naming conventions,

in .. list Supports multiple variables, all information contained in a single
file, reproducible
Harder to automate submit file creation

from .. file Supports multiple variables, highly modular (easy to use one
submit file for many job batches), reproducible
Additional file needed

multiple
queue
statements

Not recommended. Can be useful when submitting job batches
where a single (non-file/argument) characteristic is changing

Queue Statement Comparison

Using Multiple Variables
• The "from" syntax supports using multiple variables from a list.

executable = compare_states
arguments = -y $(option) -i $(file)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = $(file)

queue file,option from job_list.txt

wi.dat, 2010
wi.dat, 2015
ca.dat, 2010
ca.dat, 2015
ia.dat, 2010
ia.dat, 2015

job.submit job_list.txt

Other Features
• Match existing files or directories:

• Submit multiple jobs with same input data

• Use other automatic variables: $(Step)

queue input matching files *.dat

queue directory matching dirs job*

queue 10 input matching files *.dat

arguments = -i $(input) -rep $(Step)
queue 10 input matching files *.dat

(60 second) Pause
Questions so far?

Job Matching and
Class Ad Attributes

The Central Manager
• HTCondor matches jobs with computers via a “central manager”.

central manager

submit
execute

execute

execute m
an

ag
er

 b
y

G
an

 K
ho

on
 L

ay
 fr

om
 th

e
N

ou
n

Pr
oj

ec
t

Class Ads
• HTCondor stores a list of information

about each job and each computer.
• This information is stored as a “Class Ad”
• Class Ads have the format:

• AttributeName = value

can be a boolean,
number, or string Ph

ot
o

by
 W

he
rd

a
Ar

si
an

to
 o

n
U

ns
pl

as
h

Job Class Ad
RequestCpus = 1
Err = "job.err"
WhenToTransferOutput = "ON_EXIT"
TargetType = "Machine"
Cmd =
"/home/alice/tests/htcondor_week/compare_states"
JobUniverse = 5
Iwd = "/home/alice/tests/htcondor_week"
RequestDisk = 20480
NumJobStarts = 0
WantRemoteIO = true
TransferInput = "us.dat,wi.dat"
MyType = "Job"
Out = "job.out"
UserLog =
"/home/alice/tests/htcondor_week/job.log"
RequestMemory = 20
...

+
HTCondor configuration*

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

should_transfer_files = YES
transfer_input_files = us.dat, wi.dat
when_to_transfer_output = ON_EXIT

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

=>

Computer “Machine” Class Ad
HasFileTransfer = true
DynamicSlot = true
TotalSlotDisk = 4300218.0
TargetType = "Job"
TotalSlotMemory = 2048
Mips = 17902
Memory = 2048
UtsnameSysname = "Linux"
MAX_PREEMPT = (3600 * 72)
Requirements = (START) && (
IsValidCheckpointPlatform) && (
WithinResourceLimits)
OpSysMajorVer = 6
TotalMemory = 9889
HasGluster = true
OpSysName = "SL"
HasDocker = true
...

=>
+

HTCondor configuration

Job Matching
• On a regular basis, the central manager reviews Job and Machine

Class Ads and matches jobs to computers.

central manager

submit
execute

execute

execute

Job Execution
• (Then the submit and execute points communicate directly.)

submit
execute

execute

execute

Class Ads for People
• Class Ads also provide lots of useful information about jobs and

computers to HTCondor users and administrators

Photo by Roman Kraft on Unsplash

Finding Job Attributes
• Use the “long” option for condor_q

condor_q -l JobId

$ condor_q -l 128.0
WhenToTransferOutput = "ON_EXIT"
TargetType = "Machine"
Cmd = "/home/alice/tests/htcondor_week/compare_states"
JobUniverse = 5
Iwd = "/home/alice/tests/htcondor_week"
RequestDisk = 20480
NumJobStarts = 0
WantRemoteIO = true
OnExitRemove = true
TransferInput = "us.dat,wi.dat"
MyType = "Job”
UserLog = "/home/alice/tests/htcondor_week/job.log"
RequestMemory = 20
...

Useful Job Attributes
• UserLog: location of job log
• Iwd: Initial Working Directory (i.e. submission directory) on submit

node
• MemoryUsage: maximum memory the job has used
• RemoteHost: where the job is running
• ClusterId, ProcID, JobBatchName
• ...and more (see the manual)

Displaying Job Attributes
• Use the “auto-format” option:

condor_q [U/C/J] -af Attribute1 Attribute2 ...

$ condor_q -af ClusterId ProcId RemoteHost MemoryUsage

1725 116 slot1_1@e092.chtc.wisc.edu 1709
1725 118 slot1_2@e093.chtc.wisc.edu 1709
1725 137 slot1_8@e125.chtc.wisc.edu 1709
1725 139 slot1_7@e121.chtc.wisc.edu 1709
1861 0 slot1_5@c025.chtc.wisc.edu 196
1863 0 slot1_3@atlas10.chtc.wisc.edu 269
1864 0 slot1_25@e348.chtc.wisc.edu 245
1865 0 slot1_23@e305.chtc.wisc.edu 196
1871 0 slot1_6@e176.chtc.wisc.edu 220

Selecting Job Attributes
• Use the "constraint" option, along with an expression for what jobs

you want to look at:
condor_q [U/C/J] -constraint 'Attribute >/</== value'

$ condor_q -constraint 'JobBatchName == "CoolJobs"'

OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CoolJobs 5/9 11:03 _ _ 3 3 128.0-2

Other Displays
• See the whole queue (all users, all jobs)

condor_q -all

$ condor_q -all

-- Schedd: submit-1.chtc.wisc.edu : <128.104.101.92:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE HOLD TOTAL JOB_IDS
alice DAG: 128 5/9 02:52 982 2 _ _ 1000 18888976.0 ...
bob DAG: 139 5/9 09:21 _ 1 89 _ 180 18910071.0 ...
alice DAG: 219 5/9 10:31 1 997 2 _ 1000 18911030.0 ...
bob DAG: 226 5/9 10:51 10 _ 1 _ 44 18913051.0
bob CMD: ce.sh 5/9 10:55 _ _ _ 2 _ 18913029.0 ...
alice CMD: sb 5/9 10:57 _ 2 998 _ _ 18913030.0-999

Class Ads for Computers
• as condor_q is to jobs, condor_status is to computers (or “machines”)

$ condor_status
Name OpSys Arch State

Activity LoadAv Mem Actvty
slot1@c001.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.000 673
25+01
slot1_1@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_2@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1_3@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+00
slot1_4@c001.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+14
slot1@c002.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 1.000 2693 19+19
slot1_1@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+04
slot1_2@c002.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01
slot1@c004.chtc.wisc.edu LINUX X86_64 Unclaimed Idle 0.010 645 25+05
slot1_1@c004.chtc.wisc.edu LINUX X86_64 Claimed Busy 1.000 2048 0+01

Total Owner Claimed Unclaimed Matched Preempting
Backfill Drain

X86_64/LINUX 10962 0 10340 613 0 0 0 9
X86_64/WINDOWS 2 2 0 0 0 0 0 0

Total 10964 2 10340 613 0 0 0 9

Machine Attributes
• To summarize, use the "-compact" option

condor_status -compact

$ condor_status -compact
Machine Platform Slots Cpus Gpus TotalGb FreCpu FreeGb CpuLoad ST
e007.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.00 1.24 Cb
e008.chtc.wisc.edu x64/SL6 8 8 23.46 0 0.46 0.97 Cb
e009.chtc.wisc.edu x64/SL6 11 16 23.46 5 0.00 0.81 **
e010.chtc.wisc.edu x64/SL6 8 8 23.46 0 4.46 0.76 Cb
matlab-build-1.chtc.wisc.edu x64/SL6 1 12 23.45 11 13.45 0.00 **
matlab-build-5.chtc.wisc.edu x64/SL6 0 24 23.45 24 23.45 0.04 Ui
mem1.chtc.wisc.edu x64/SL6 24 80 1009.67 8 0.17 0.60 **

Total Owner Claimed Unclaimed Matched Preempting Backfill Drain

x64/SL6 10416 0 9984 427 0 0 0 5
x64/WinVista 2 2 0 0 0 0 0 0

Total 10418 2 9984 427 0 0 0 5

Machine Attributes
• Use same options as condor_q:

condor_status -l Slot/Machine
condor_status [Machine] -af Attribute1 Attribute2 ...

$ condor_status -l slot1_1@c001.chtc.wisc.edu
HasFileTransfer = true
COLLECTOR_HOST_STRING = "cm.chtc.wisc.edu”
TargetType = "Job”
TotalTimeClaimedBusy = 43334c001.chtc.wisc.edu
Mips = 17902
MAX_PREEMPT = (3600 * (72 - 68 * (WantGlidein =?= true)))
Requirements = (START) && (IsValidCheckpointPlatform) && (WithinResourceLimits)
State = "Claimed"
OpSysMajorVer = 6
OpSysName = "SL”
...

Testing and Troubleshooting

What Can Go Wrong?
• Jobs can go wrong “internally”:

• something happens after the executable begins to run
• Jobs can go wrong from HTCondor’s perspective:

• A job can’t be started at all,
• Uses too much memory,
• Has a badly formatted executable,
• And more...

Reviewing Failed Jobs
• A job’s log, output and error files can provide valuable information for

troubleshooting
Log Output Error

• When jobs were
submitted, started, and
stopped

• Resources used
• Exit status
• Where job ran
• Interruption reasons

Any “print” or “display”
information from your
program

Captured by the operating
system

Reviewing Recent Jobs
• To review a large group of jobs at once, use condor_history
[U/C/J]

• As condor_q is to the present, condor_history is to the past
$ condor_history alice
ID OWNER SUBMITTED RUN_TIME ST COMPLETED CMD
189.1012 alice 5/11 09:52 0+00:07:37 C 5/11 16:00 /home/alice
189.1002 alice 5/11 09:52 0+00:08:03 C 5/11 16:00 /home/alice
189.1081 alice 5/11 09:52 0+00:03:16 C 5/11 16:00 /home/alice
189.944 alice 5/11 09:52 0+00:11:15 C 5/11 16:00 /home/alice
189.659 alice 5/11 09:52 0+00:26:56 C 5/11 16:00 /home/alice
189.653 alice 5/11 09:52 0+00:27:07 C 5/11 16:00 /home/alice
189.1040 alice 5/11 09:52 0+00:05:15 C 5/11 15:59 /home/alice
189.1003 alice 5/11 09:52 0+00:07:38 C 5/11 15:59 /home/alice
189.962 alice 5/11 09:52 0+00:09:36 C 5/11 15:59 /home/alice
189.961 alice 5/11 09:52 0+00:09:43 C 5/11 15:59 /home/alice
189.898 alice 5/11 09:52 0+00:13:47 C 5/11 15:59 /home/alice

HTCondor Manual: condor_history

“Live” Troubleshooting
• To log in to a job where it is running, use:

condor_ssh_to_job JobId

$ condor_ssh_to_job 128.0
Welcome to slot1_31@e395.chtc.wisc.edu!
Your condor job is running with pid(s) 3954839.

HTCondor Manual: condor_ssh_to_job

Held Jobs
• HTCondor will put your job on hold if

there’s something YOU need to fix.
• A job that goes on hold is interrupted

(all progress is lost) and kept from
running again, but remains in the
queue in the “H” state. Ph

ot
o

by
 T

im
 G

ou
w

 o
n

U
ns

pl
as

h

$ condor_q -nobatch
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 5/9 11:09 0+00:00:00 H 0 0.0 analyze.exe

1 jobs; 0 completed, 0 removed, 0 idle, 0 running, 1 held, 0 suspended

Diagnosing Holds
• If HTCondor puts jobs on hold, it provides a hold reason, which can be

viewed with:
condor_q -hold

$ condor_q -hold
ID OWNER HELD_SINCE HOLD_REASON
125.0 bob 5/09 17:12 Error from slot1_1@wid-003.chtc.wisc.edu: Job has
gone over memory limit of 2048 megabytes.

128.0 alice 5/11 12:06 Error from slot1_11@e138.chtc.wisc.edu: STARTER
at 128.104.101.138 failed to send file(s) to <128.104.101.92:9618>; SHADOW at
128.104.101.92 failed to write to file /home/alice/Test_18925319_16.err:
(errno 122) Disk quota exceeded

131.0 bob 5/12 09:02 Error from slot1_38@e270.chtc.wisc.edu: Failed
to execute '/var/lib/condor/execute/slot1/dir_2471876/condor_exec.exe' with
arguments 2: (errno=2: 'No such file or directory')

Common Hold Reasons
• Job has used more memory than requested
• Incorrect path to files that need to be transferred
• Badly formatted bash scripts (have Windows instead of Unix line

endings, are missing a header)
• Submit directory is over quota
• The administrator has put your job on hold

Fixing Holds
• Job attributes can be edited while jobs are in the queue using:

condor_qedit [U/C/J] Attribute Value

• If a job has been fixed and can run again, release it with:
condor_release [U/C/J]

$ condor_qedit 128.0 RequestMemory 3072
Set attribute ”RequestMemory".

$ condor_release 128.0
Job 18933774.0 released

HTCondor Manual: condor_qedit
HTCondor Manual: condor_release

Holding or Removing Jobs
• If you know your job has a problem and it hasn’t yet completed, you

can:
• Place it on hold yourself, with condor_hold [U/C/J]

• Remove it from the queue, using condor_rm [U/C/J]

$ condor_hold bob
All jobs of user ”bob" have been held

$ condor_hold 128.0
Job 128.0 held

$ condor_hold 128
All jobs in cluster 128 have been held

HTCondor Manual: condor_hold

Job States, Revisited

Idle
(I)

Running
(R)

Completed
(C)

condor_
submit

in the queue leaving the queue

Job States, Revisited

Idle
(I)

Running
(R)

Completed
(C)

condor_
submit

Held
(H)

condor_hold,
or HTCondor

puts
a job on holdcondor_release

in the queue leaving the queue

Job States, Revisited*

Idle
(I)

Running
(R)

Completed
(C)

condor_
submit

Held
(H)

Removed
(X)

condor_rmcondor_release

in the queue leaving the queue

*not comprehensive

condor_q

c
o
n
d
o
r
_
h
i
s
t
o
r
y

condor_hold,
or HTCondor

puts
a job on hold

Use Cases and
HTCondor Features

Interactive Jobs
• An interactive job proceeds like a normal batch job, but opens a bash

session into the job’s execution directory instead of running an
executable.

condor_submit -i submit_file

• Useful for testing and troubleshooting

$ condor_submit -i interactive.submit
Submitting job(s).
1 job(s) submitted to cluster 18980881.
Waiting for job to start...
Welcome to slot1_9@e184.chtc.wisc.edu!

Self-Checkpointing
• By default, a job that is interrupted will start from the

beginning if it is restarted.
• It is possible to implement self-checkpointing, which will

allow a job to restart from a saved state if interrupted.
• Self-checkpointing is useful for:

• very long jobs
• running on opportunistic resources.

Self-Checkpointing How-To
• Edit executable:

• Save intermediate states to a checkpoint file
• Always check for a checkpoint file when starting

• Add HTCondor option that a) saves all intermediate/output files from
the interrupted job and b) transfers them to the job when HTCondor
runs it again

when_to_transfer_output = ON_EXIT_OR_EVICT

Job Universes
• HTCondor has different “universes” for running

specialized job types
• HTCondor Manual: Choosing an HTCondor Universe

• Vanilla (default)
• good for most software
• HTCondor Manual: Vanilla Universe
• Set in the submit file using:

universe = vanilla

Ph
ot

o
on

 n
ee

dp
ix

.c
om

Other Universes
• Docker

• Run jobs inside a Docker container
• HTCondor Manual: Docker Universe Applications

universe = docker
docker_image = ubuntu:trusty
by default the docker image
is pulled from DockerHub

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out

Execute Node

Docker Container

Other Universes
• Java

• Built-in Java support
• Local

• Run jobs on the submit node
• Standard

• (No longer supported)
• For C code compiled against

HTCondor libraries

• VM
• Run jobs inside a virtual machine

• Parallel
• Used for coordinating jobs across

multiple servers (e.g. MPI code)
• Not necessary for single server

multi-core jobs

Multi-CPU and GPU Computing
• Jobs that use multiple cores on a single computer can be run

in the vanilla universe (parallel universe not needed):

• If there are computers with GPUs, request them with:

request_cpus = 16

request_gpus = 1

Automation

Automation
• After job submission,

HTCondor manages jobs
based on its configuration

• You can use options that will
customize job management
even further

• These options can automate
when jobs are started,
stopped, and removed. Ph

ot
o

by
 M

ix
ab

es
t o

n
W

ik
iM

ed
ia

, C
C-

BY
-S

A

Retries
• Problem: a small number of jobs fail; if they run again, they complete

successfully.
• Solution: If the job exits with an error, leave it in the queue to run

again. This is done via the automatic option max_retries.

max_retries = 5

Limiting Jobs
• Problem: Submitting more than a few thousand jobs to the queue at

once
• Solution: Use the max_idle option. This limits the number of jobs

submitted at one time, but allows there to always be idle jobs ready
to run.

max_idle = 1000

Useful Job Attributes for Automation
• CurrentTime: current time
• EnteredCurrentStatus: time of last status change
• ExitCode: the exit code from the job
• HoldReasonCode: number corresponding to a hold reason
• NumJobStarts: how many times the job has gone from idle to

running
• JobStatus: number indicating idle, running, held, etc.

HTCondor Manual: Appendix A: JobStatus and HoldReason Codes

Automatically Hold Jobs
• Problem: Your job should run in 2 hours or less, but a few jobs “hang”

randomly and run for days
• Solution: Put jobs on hold if they run for over 2 hours, using a
periodic_hold statement

periodic_hold = (JobStatus == 2) &&
((CurrentTime - EnteredCurrentStatus) > (60 * 60 * 2))

job is running

2 hours
How long the job has been

running, in seconds

Automatically Release Jobs
• Problem (related to previous): A few jobs are being held for running

long; they will complete if they run again.
• Solution: automatically release those held jobs with a
periodic_release option, up to 5 times

periodic_release = (JobStatus == 5) &&
(HoldReasonCode == 3) && (NumJobStarts < 5)

job is held

job was put on hold
by periodic_hold

job has started running
less than 5 times

Automatically Remove Jobs
• Problem: Jobs are repetitively failing
• Solution: Remove jobs from the queue using a periodic_remove

statement

periodic_remove = (NumJobsStarts > 5)

job has started running
more than 5 times

Dynamically Request Memory
• Problem: a batch of jobs uses a wide variety of memory; many jobs

only need 256MB, but some need up to 2 GB.
• Solution: Use a dynamic memory request.

request_memory = ifthenelse(MemoryUsage =!= undefined,
MAX({MemoryUsage * 3/2, 256}),
256)

if the job has run before...

...request either a multiple of the memory
used by a previous run, or the default,

whichever is larger.

else, use the default.

Workflows
• Problem: Want to submit jobs in a

particular order, with dependencies
between groups of jobs

• Solution: Write a DAG

• To learn about this, stay for the next
talk, DAGMan: HTCondor and
Workflows by Lauren Michael.

split

1 2 3 N

combine

...

download

Final Questions?

Ph
ot

o
by

 d
on

ch
ili

 o
n

fli
ck

r,
CC

-B
Y-

SA

	Presentation Title (2)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Heading
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Chapter Title
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109

