
GIT Tutorial For Beginners
Link

Juliette Alimena, based on the tutorial by Tadej Novak
FH Sustainable Computing Workshop

November 7, 2025

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/tree/main/exercises

Version Control Systems
Why use version control systems/documentation, like GIT?

What is version control?

• Keep history of the code
• Can revert if something goes wrong!

• Collaborate easily with other people
• Automatically build or deploy with every change (see CI tutorial!)

2

GIT is Distributed

• “Distributed”: Each developer has (at
least) one copy of the repository: the local
repository

• Each developer interacts with one or
multiple remote repository: remotes

• Online access needed only to share your
work with others and obtain the changes
introduced by others

3

GIT Basics
• Initialise a git repository: git init

• Clone a copy of a remote repo: git clone <url> <local-folder>

• main or master is the main branch of your repository

• Make your changes available (steps to push to a remote):
• git diff <filename> (check what changes you made in a file)
• git add <filename> (add a file with all changes)

• Another option: git add -p (cycle through changes and add one by one)

• Never use: git add *
• git commit -m "My commit message”
• git push <remote> <branch>

• Display which remote repositories are known: git remote

• Display the current status of your working copy (and its relationship with remotes): git status

• Check the history: git log

4

Exercise 1

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/01-cloning-forking.md

Organizing Your Work

Several options available to collaborate with others:
• Everyone pushes to the remote repository, OR
• Everyone make a fork of the repository
• Each person pushes to their fork
• When ready, submit a pull/merge request to the main

repository
• Can set the main repository as an “upstream” remote

repository

5

Exercise 1

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/01-cloning-forking.md

Organizing Your Work: One Repo
• One possible way to organize your

work: everyone pushes to one repo
• main or master is the main branch

of your repository
• Work on larger chunks in dedicated

branches

• git checkout <branch>
• Create tags to specify a state of

your repository

• git tag <tag version>
6

Exercise 2

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/02-branching.md

Organizing Your Work: Forks and Merge/Pull Requests
• Another way to organize your work,

particularly if you are collaborating with
several other people, is to use forks and
merge/pull requests

• Fork: your own online copy of the
repository
• After you fork the original repository,

you can clone your fork locally
• You can push changes to your fork

without affecting the original repository
• When you are ready, you can submit a

merge/pull request to merge your changes
from your fork back into the original
repository

7

• Can add the original repo as an
upstream remote repo
• And get back the changes that occur

in the upstream repository into your
fork with merge or rebase

Merge vs Rebase

8

Exercise 3

The feature branch diverges
from the main branch:

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/03-merge-rebase.md

Merge vs Rebase

9

Exercise 3

The feature branch diverges
from the main branch:

Merge main into the
feature branch:

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/03-merge-rebase.md

Merge vs Rebase

10

Exercise 3

The feature branch diverges
from the main branch:

Merge main into the
feature branch:

Rebase the feature
branch onto main:OR

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/03-merge-rebase.md

Merge vs Rebase

11

Exercise 3

Merge main into the
feature branch:

Rebase the feature
branch onto main:OR

In merging:
• Main doesn’t get changed
• The feature branch will get an

additional merge commit at the end

In rebase:
• The entire feature branch is

moved as if it happened after the
latest commits in main

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises/-/blob/main/exercises/03-merge-rebase.md

Merge and Rebase Commands
Merge
• Always go to the branch you want to merge your changes to: git

checkout master
• Merge the changes: git merge super-new-feature
Rebase
• Go to the branch you are working on: git checkout super-new-

feature
• Rebase onto a branch (e.g. master): git rebase master
• Merge like usual

12

Providers

• Basically, you have GitLab and GitHub as online providers
• DESY provides an instance of GitLab: https://gitlab.desy.de
• We will be using this today: 3 Git Exercises on DESY GitLab

• CERN also has an instance of GitLab
• GitHub is one of the other popular hosting providers

13

https://gitlab.desy.de
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/git-exercises
http://www.apple.com

Some Technicalities

• The local repo is located under a folder named .git in your working copy
• Git uses 160-bit (SHA-1) hashes to point to a given state of your repository
• This hash is always unique (collision unlikely)
• It is hard to memorize and not very practical — we use references:
• HEAD is a reference to the hash describing the current status
• main or master is a branch (usually the main branch)
• release/21.0.21 is a tag

• A given hash points to the same content, even if from different repositories,
branches, tags, …

• For small repositories, 7 leading digits of the hash are (usually) enough

• For example, to show the contents of one commit: git show e3153d7

14

Git Ignore

• You can tell Git to ignore certain files and never look at them when you
want to commit

• This can be useful when you have extra things in your local directory,
for example root files or pdfs that you made but don’t want to track in
Git

• To do this, just create a file in your directory called .gitignore and in
this file, create a list of files (or types of files, e.g. *.zip) for Git to
ignore
• Here’s a list of some common file types to ignore

• Don’t forget to add/commit/push your .gitignore file to your repo ;)

15

https://gist.github.com/octocat/9257657

More Useful GIT Commands (~advanced)
• Stash:
• Temporarily save and remove your local changes

• Add to stash: git stash save <name>

• List stashed: git stash list
• Retrieve from stash

• but do not remove it: git apply <name>

• and remove it: git pop <name>
• <name> is always optional

• Cherry-pick:
• Take one hash and apply it to your current staging area:

git cherry-pick e3153d7
16

What If?

I’ve made a lot of changes but now I want to submit just some of
them?
• Look at the log and decide what you want (git log)
• Make a new branch from upstream/master: git checkout -b

feature-a upstream/master
• Cherry-pick commit(s) that you found in the log:

• git cherry-pick e3153d7
• git cherry-pick f249a34

• Push to the origin: git push -u origin feature-a

17

What If?

I’ve made a commit but I forgot a file?
• Add the file that is missing: git add missing.txt
• Update, that is, amend the commit: git commit --amend

18

What If?

I’ve added too much to the staging area/commit?
• If not committed yet, reset the file: git reset my-file.txt
• If have already committed, reset the state to the previous HEAD:

git reset --soft HEAD~1

19

Summary
• Git helps you keep track of the history of your (nonbinary) files and easily collaborate with

others
• Code
• Thesis (git works with overleaf…)
• Recipes

• A lot of material covered today — the goal should be to understand the philosophy
• With the exercises, the goal is for you to understand the basics of how to do these things in

practice
• Useful links:

• https://training.github.com/downloads/github-git-cheat-sheet.pdf
• https://learngitbranching.js.org/
• https://ohshitgit.com

• But in general, if you have a git problem, google/ChatGPT is your friend
• Countless people have screwed up like you just did before you

20

https://training.github.com/downloads/github-git-cheat-sheet.pdf
https://learngitbranching.js.org/
https://ohshitgit.com

