Good Coding Practices

Thomas Madlener

FH Sustainable Computing Workshop
Nov 07, 2024

Menu for today

e CPU and memory basics for performance
e Sustainability aspects (including human resources)
e Avoiding common performance pitfalls in C++

e Some exercises (and food for thought)

What not to expect

e Introduction to c++ / python from scratch
o See the HSF Training Courses for that

e GPU / heterogeneous resources
e In depth discussion of leveraging CPU features
e Profiling

e "Proper" benchmarking

https://hepsoftwarefoundation.org/training/center.html

Development of CPUs & Processor-memory gap

107
108

10°

40 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10%)

Frequency (MHz)

Typical Power
(Watts)

Number of
Logical Cores

10" ‘
F Y
0 A mn v : : *H00
10 —sg ----45-----0------‘-‘----oﬁo--m-mmoo ---------- R -
i i i i
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

Performance

100,000

10,000

1,000

100

Processor
Processor-Memory

10

Performance Gap

1980

1985

1995 2000 2005 2010

A modern CPU is a complicated beast

Memory Management
Unit (MMU)

!

L2 and L3

Control
Unit

| Clock

L1d Cache

Cache

L1i Cache

1L

| A Register || B Re

ister |

Instruction
Pointer

Instruction
Register

Arithmetic and

Logic Unit
(ALU)

Accumulator

CPU

Multithreading
Hyperthreading

Caching on multiple levels
Instruction pipelining

Speculative execution / branch
prediction

Vectorization

Memory is king

Hardware Evolution and Heterogeneity

CERN
School ©f Computing

64 B/1c, 4 c latency

L1l L1D
(32 KB) (32 KB)
s 1[64 B/1c, 12 c latency
Approximate memory (256 KB)
Latencies on Intel i
Haswell CPUs 64 B/1c for all cores
~36 ¢ latency
Shared L3
(8192 KB)

~24 B/c for all cores
200-450 c latency

c =cycle

Adapted from S. Jarp

40 Andrzej Nowak

Sustainability & Performance

e Execution time o< energy consumption
arXiv:2410.05460
o Better performance — more
sustainable

e A stalled CPU still consumers power!
o Infrastructure as well

e FLOPS / Watt numbers assume full CPU
utilization
o (100 % only achievable in theoretical
scenarios)

-

>

0%

100%

https://arxiv.org/abs/2410.05460

Practical advice

e Make data contiguous and cache friendly
o Avoid pointers & virtual functions where possible

e Make data requests cache-friendly and predictable

e Design with data flow in mind
o "Natural" in many cases in HEP

e Write simple code
o Easier to maintain and understand

o Compiler might have an easier job optimizing it

What does Cache friendly even mean?

e Data that is accessed together is close by in memory
o CPU can "guess" which data are needed next

o (Pre)fetches them into caches to make them quickly available

// Actual Data will live scattered throughout memory
std: :vector<Data*> ptrVec;
// Access might be slow due to "pointer chasing"

// All Data will be stored contiguously 1n memory

std: :vector<Data> valueVec;

// Access likely very quick since the CPU knows where the next
// element lives in memory

Considerations for software design

Necessary efforts depend on several factors
(Expected) lifetime of the code you are writing?

(Potential) users other than you?
o Keep in mind future you!

Software changes constantly
o Divide into independent pieces when possible

o No "spooky action at a distance"
Take time to refactor if new requirements come up
(Automated) testing is part of the process

Documentation is part of the process

10

Building blocks for software design

e Functions
o Avoid code repetition

o Reduce variable scope / improve readability
o Isolation of dependencies

e class / struct

o Group data together
o Ensure preservation of invariants

e Naming
o Good naming reduces need for comments

11

General considerations

No mutable global state!

Immutable global variables / configuration OK
o Keep as small as possible

Avoid manual memory management
© 'std::unique_ptr is a thing

Use containers over C-style arrays
o 'std::vector isalmost always the right choice

o Store values not pointers

Functions, functions, functions, ...

12

Considerations for functions

e Split large functions into smaller ones

e Write "pure" functions
o Easier to test

o No side-effects to keep in mind

o Pass arguments by const& by default

e Keep number of arguments low
o Group input arguments into class es if necessary

e Try to avoid in-out parameters
o Return multiple values

o Group return value into a class

13

Split large functions into smaller ones

def complicated_function(args):
"""This long function has all the lines"""

step 1: read data
... very involved procedure to read data ...

step 2: filter data
... do some stuff to filter out some things

extract result 1
... complicated procedure to get some result

extract another result
... entirely independent procedure for another result
e Common pattern

e Halfway there to functions
o Even naming is solved already

Split large functions into smaller ones

def complicated_function(args):
"""This long function has all the things but not the lines"""
data = read_data(args)

filtered_data = filter_data(data)
result_1 = get_result_1(filtered_data)

indep_res = get_independent_result(filtered_data)

e Common pattern

e Halfway there to functions
o Even naming is solved already (to a certain point)

e There are even tools to help with this!

15

Passing function arguments in C++

// Pass by value (do this for small objects)

// --> Copy the 1inputs

// --> No changes visible outside (automatically threadsafe)
void process_1(vector<Data> inputs);

// Pass by reference (this should almost never be necessary!)
// --> No copy

// --> Function CAN mutate inputs (NOT threadsafe!)

void process_2(vector<Data>& inputs);

// Pass by const reference (do this for large objects)
// --> No copy

// --> Function CANNOT mutate inputs (threadsafe)

void process_2(const vector<Data>& inputs);

16

Avoid in-out parameters

bool process(vector<bData> const& inputs,
vector<Data>& output,
double& efficiency);

// ============= Usage ============

vector<Data> output{};

double prockeff;

if (process(inputs, output, prockEff)) {
// do something

}

e Complicates const-correctness

P llNOiSyll

17

Avoid in-out parameters

std::tuple<bool, vector<bData>, double>
process(vector<Data> const& inputs);

const auto& [success, output, prockEff] = process(inputs);
if (success) {
// do something

}

e Use structured bindings

e Introduce a simple struct or class if applicable

e Consider std::optional

18

Const correctness in C++

e C++ has the const keyword

o Mark variables, function parameters and member functions as immutable
Allows compiler to more aggressively optimize
Communicates intent to users / developers
Since C++11 a const member function is assumed to be thread-safe!

Unfortunately not the default in C++

19

Basics of Testing

e Different levels of tests

e Small (pure) functions make writing unit tests easier
e Write tests in parallel to other code

e Also check "unhappy" paths

e Every language has (unit) testing frameworks

e Make tests quick to run

e Run them as part of the development cycle
o A bug that is caught by a test doesn't need debugging!

e Automate running tests (CI)

e (Tool assisted) refactoring much easier if you have tests

20

Final thoughts (1 / 2)

e Use an editor that works with you not against you
o Syntax highlighting, autocomplete, code browsing, documentation, ...

o VS Code is a good starting point

e ChatGPT (and friends) are great but not always right
o Treat them as "better autocomplete" and check what they produce!

o Keep in mind ToS and what they say about your inputs

21

Final thoughts (2 / 2)
e Error messages can be useful if read completely
o Starting at the top is usually a good idea

e Enable compiler warnings and treat them as errors by default
o -Werror for enforcement by the compiler

e Jupyter notebooks are great for prototyping
o Not so much for storing (and versioning!) your code

22

Resources & useful links

e HSF Training website - material for various languages and tools
e cppreference.com - reference page for c++ & STL
e godbolt.org - "compiler explorer", online c++ compiler

e isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

23

https://hepsoftwarefoundation.org/training/center.html
https://en.cppreference.com/w/
https://godbolt.org/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Exercises

e Pick and choose
e Solutions / inspiration included

e C++ exercises
o Easy performance gains / pitfalls, writing const correct code

o Refactoring an existing analysis

e python exercises
o Unit testing introduction

24

Exercises repositories

gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/
e software-exercises (main exercises for c++ and python)
* python-unittesting (intro to pytest and unittesting with python)

* cpp-unittesting (intro to unittesting with c++)

25

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/

