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Menu for today

e CPU and memory basics for performance
e Sustainability aspects (including human resources)
e Avoiding common performance pitfalls in C++

e Some exercises (and food for thought)



What not to expect

e Introduction to c++ / python from scratch
o See the HSF Training Courses for that

e GPU / heterogeneous resources
e In depth discussion of leveraging CPU features
e Profiling

e "Proper" benchmarking


https://hepsoftwarefoundation.org/training/center.html

Development of CPUs & Processor-memory gap
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A modern CPU is a complicated beast
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Memory is king

Hardware Evolution and Heterogeneity
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Sustainability & Performance

e Execution time o< energy consumption
arXiv:2410.05460
o Better performance — more
sustainable

e A stalled CPU still consumers power!
o Infrastructure as well

e FLOPS / Watt numbers assume full CPU
utilization
o (100 % only achievable in theoretical
scenarios)
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https://arxiv.org/abs/2410.05460

Practical advice

e Make data contiguous and cache friendly
o Avoid pointers & virtual functions where possible

e Make data requests cache-friendly and predictable

e Design with data flow in mind
o "Natural" in many cases in HEP

e Write simple code
o Easier to maintain and understand

o Compiler might have an easier job optimizing it



What does Cache friendly even mean?

e Data that is accessed together is close by in memory
o CPU can "guess" which data are needed next

o (Pre)fetches them into caches to make them quickly available

// Actual Data will live scattered throughout memory
std: :vector<Data*> ptrVec;
// Access might be slow due to "pointer chasing"

// All Data will be stored contiguously 1n memory

std: :vector<Data> valueVec;

// Access likely very quick since the CPU knows where the next
// element lives in memory



Considerations for software design

Necessary efforts depend on several factors
(Expected) lifetime of the code you are writing?

(Potential) users other than you?
o Keep in mind future you!

Software changes constantly
o Divide into independent pieces when possible

o No "spooky action at a distance"
Take time to refactor if new requirements come up
(Automated) testing is part of the process

Documentation is part of the process
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Building blocks for software design

e Functions
o Avoid code repetition

o Reduce variable scope / improve readability
o Isolation of dependencies

e class / struct

o Group data together
o Ensure preservation of invariants

e Naming
o Good naming reduces need for comments

11



General considerations

No mutable global state!

Immutable global variables / configuration OK
o Keep as small as possible

Avoid manual memory management
© 'std::unique_ptr is a thing

Use containers over C-style arrays
o 'std::vector isalmost always the right choice

o Store values not pointers

Functions, functions, functions, ...
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Considerations for functions

e Split large functions into smaller ones

e Write "pure" functions
o Easier to test

o No side-effects to keep in mind

o Pass arguments by const& by default

e Keep number of arguments low
o Group input arguments into class es if necessary

e Try to avoid in-out parameters
o Return multiple values

o Group return value into a class
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Split large functions into smaller ones

def complicated_function(args):
"""This long function has all the lines"""

# step 1: read data
# ... very involved procedure to read data ...

# step 2: filter data
# ... do some stuff to filter out some things

# extract result 1
# ... complicated procedure to get some result

# extract another result
# ... entirely independent procedure for another result
e Common pattern

e Halfway there to functions
o Even naming is solved already



Split large functions into smaller ones

def complicated_function(args):
"""This long function has all the things but not the lines"""
data = read_data(args)

filtered_data = filter_data(data)
result_1 = get_result_1(filtered_data)

indep_res = get_independent_result(filtered_data)

e Common pattern

e Halfway there to functions
o Even naming is solved already (to a certain point)

e There are even tools to help with this!
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Passing function arguments in C++

// Pass by value (do this for small objects)

// --> Copy the 1inputs

// --> No changes visible outside (automatically threadsafe)
void process_1(vector<Data> inputs);

// Pass by reference (this should almost never be necessary!)
// --> No copy

// --> Function CAN mutate inputs (NOT threadsafe!)

void process_2(vector<Data>& inputs);

// Pass by const reference (do this for large objects)
// --> No copy

// --> Function CANNOT mutate inputs (threadsafe)

void process_2(const vector<Data>& inputs);
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Avoid in-out parameters

bool process(vector<bData> const& inputs,
vector<Data>& output,
double& efficiency);

// ============= Usage ============

vector<Data> output{};

double prockeff;

if (process(inputs, output, prockEff)) {
// do something

}

e Complicates const-correctness

P llNOiSyll
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Avoid in-out parameters

std::tuple<bool, vector<bData>, double>
process(vector<Data> const& inputs);

const auto& [success, output, prockEff] = process(inputs);
if (success) {
// do something

}

e Use structured bindings

e Introduce a simple struct or class if applicable

e Consider std::optional
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Const correctness in C++

e C++ has the const keyword

o Mark variables, function parameters and member functions as immutable
Allows compiler to more aggressively optimize
Communicates intent to users / developers
Since C++11 a const member function is assumed to be thread-safe!

Unfortunately not the default in C++
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Basics of Testing

e Different levels of tests

e Small (pure) functions make writing unit tests easier
e Write tests in parallel to other code

e Also check "unhappy" paths

e Every language has (unit) testing frameworks

e Make tests quick to run

e Run them as part of the development cycle
o A bug that is caught by a test doesn't need debugging!

e Automate running tests (CI)

e (Tool assisted) refactoring much easier if you have tests
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Final thoughts (1 / 2)

e Use an editor that works with you not against you
o Syntax highlighting, autocomplete, code browsing, documentation, ...

o VS Code is a good starting point

e ChatGPT (and friends) are great but not always right
o Treat them as "better autocomplete" and check what they produce!

o Keep in mind ToS and what they say about your inputs
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Final thoughts (2 / 2)
e Error messages can be useful if read completely
o Starting at the top is usually a good idea

e Enable compiler warnings and treat them as errors by default
o -Werror for enforcement by the compiler

e Jupyter notebooks are great for prototyping
o Not so much for storing (and versioning!) your code
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Resources & useful links

e HSF Training website - material for various languages and tools
e cppreference.com - reference page for c++ & STL
e godbolt.org - "compiler explorer", online c++ compiler

e isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

23


https://hepsoftwarefoundation.org/training/center.html
https://en.cppreference.com/w/
https://godbolt.org/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Exercises

e Pick and choose
e Solutions / inspiration included

e C++ exercises
o Easy performance gains / pitfalls, writing const correct code

o Refactoring an existing analysis

e python exercises
o Unit testing introduction

24



Exercises repositories

gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/
e software-exercises (main exercises for c++ and python)
* python-unittesting (intro to pytest and unittesting with python)

* cpp-unittesting (intro to unittesting with c++)
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https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/

