
Good Coding Practices

Thomas Madlener

FH Sustainable Computing Workshop
Nov 07, 2024

1

Menu for today

CPU and memory basics for performance
Sustainability aspects (including human resources)
Avoiding common performance pitfalls in C++
Some exercises (and food for thought)

2

What not to expect

Introduction to c++ / python from scratch
See the HSF Training Courses for that

GPU / heterogeneous resources
In depth discussion of leveraging CPU features
Profiling
"Proper" benchmarking

3

https://hepsoftwarefoundation.org/training/center.html

Development of CPUs & Processor-memory gap

4

A modern CPU is a complicated beast

Multithreading
Hyperthreading
Caching on multiple levels
Instruction pipelining
Speculative execution / branch
prediction
Vectorization

5

Memory is king

6

Sustainability & Performance

Execution time energy consumption
arXiv:2410.05460

Better performance more
sustainable

A stalled CPU still consumers power!
Infrastructure as well

FLOPS / Watt numbers assume full CPU
utilization

(100 % only achievable in theoretical
scenarios)

7

https://arxiv.org/abs/2410.05460

Practical advice

Make data contiguous and cache friendly
Avoid pointers & virtual functions where possible

Make data requests cache-friendly and predictable
Design with data flow in mind

"Natural" in many cases in HEP
Write simple code

Easier to maintain and understand
Compiler might have an easier job optimizing it

8

What does Cache friendly even mean?

Data that is accessed together is close by in memory
CPU can "guess" which data are needed next
(Pre)fetches them into caches to make them quickly available

// Actual Data will live scattered throughout memory
std::vector<Data*> ptrVec;
// Access might be slow due to "pointer chasing"

// All Data will be stored contiguously in memory
std::vector<Data> valueVec;
// Access likely very quick since the CPU knows where the next
// element lives in memory

9

Considerations for software design

Necessary efforts depend on several factors
(Expected) lifetime of the code you are writing?
(Potential) users other than you?

Keep in mind future you!
Software changes constantly

Divide into independent pieces when possible
No "spooky action at a distance"

Take time to refactor if new requirements come up
(Automated) testing is part of the process
Documentation is part of the process

10

Building blocks for software design

Functions
Avoid code repetition
Reduce variable scope / improve readability
Isolation of dependencies

class / struct
Group data together
Ensure preservation of invariants

Naming
Good naming reduces need for comments

11

General considerations

No mutable global state!
Immutable global variables / configuration OK

Keep as small as possible
Avoid manual memory management

std::unique_ptr is a thing

Use containers over C-style arrays
std::vector is almost always the right choice

Store values not pointers
Functions, functions, functions, ...

12

Considerations for functions

Split large functions into smaller ones
Write "pure" functions

Easier to test
No side-effects to keep in mind
Pass arguments by const& by default

Keep number of arguments low
Group input arguments into class es if necessary

Try to avoid in-out parameters
Return multiple values
Group return value into a class

13

Split large functions into smaller ones

def complicated_function(args):
 """This long function has all the lines"""
 # step 1: read data
 # ... very involved procedure to read data ...

 # step 2: filter data
 # ... do some stuff to filter out some things ...

 # extract result 1
 # ... complicated procedure to get some result ...

 # extract another result
 # ... entirely independent procedure for another result ...

Common pattern
Halfway there to functions

Even naming is solved already 14

Split large functions into smaller ones

def complicated_function(args):
 """This long function has all the things but not the lines"""
 data = read_data(args)

 filtered_data = filter_data(data)

 result_1 = get_result_1(filtered_data)

 indep_res = get_independent_result(filtered_data)

Common pattern
Halfway there to functions

Even naming is solved already (to a certain point)
There are even tools to help with this!

15

Passing function arguments in C++

// Pass by value (do this for small objects)
// --> Copy the inputs
// --> No changes visible outside (automatically threadsafe)
void process_1(vector<Data> inputs);

// Pass by reference (this should almost never be necessary!)
// --> No copy
// --> Function CAN mutate inputs (NOT threadsafe!)
void process_2(vector<Data>& inputs);

// Pass by const reference (do this for large objects)
// --> No copy
// --> Function CANNOT mutate inputs (threadsafe)
void process_2(const vector<Data>& inputs);

16

Avoid in-out parameters

bool process(vector<Data> const& inputs,
 vector<Data>& output,
 double& efficiency);

// ============= Usage ============
vector<Data> output{};
double procEff;
if (process(inputs, output, procEff)) {
 // do something
}

Complicates const-correctness
"Noisy"

17

Avoid in-out parameters

std::tuple<bool, vector<Data>, double>
process(vector<Data> const& inputs);

const auto& [success, output, procEff] = process(inputs);
if (success) {
 // do something
}

Use structured bindings
Introduce a simple struct or class if applicable

Consider std::optional

18

Const correctness in C++

C++ has the const keyword
Mark variables, function parameters and member functions as immutable

Allows compiler to more aggressively optimize
Communicates intent to users / developers
Since C++11 a const member function is assumed to be thread-safe!

Unfortunately not the default in C++

19

Basics of Testing

Different levels of tests
Small (pure) functions make writing unit tests easier
Write tests in parallel to other code
Also check "unhappy" paths
Every language has (unit) testing frameworks
Make tests quick to run
Run them as part of the development cycle

A bug that is caught by a test doesn't need debugging!
Automate running tests (CI)
(Tool assisted) refactoring much easier if you have tests

20

Final thoughts (1 / 2)

Use an editor that works with you not against you
Syntax highlighting, autocomplete, code browsing, documentation, ...
VS Code is a good starting point

ChatGPT (and friends) are great but not always right
Treat them as "better autocomplete" and check what they produce!
Keep in mind ToS and what they say about your inputs

21

Final thoughts (2 / 2)
Error messages can be useful if read completely

Starting at the top is usually a good idea
Enable compiler warnings and treat them as errors by default

-Werror for enforcement by the compiler

Jupyter notebooks are great for prototyping
Not so much for storing (and versioning!) your code

22

Resources & useful links

HSF Training website - material for various languages and tools
cppreference.com - reference page for c++ & STL
godbolt.org - "compiler explorer", online c++ compiler
isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

23

https://hepsoftwarefoundation.org/training/center.html
https://en.cppreference.com/w/
https://godbolt.org/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Exercises

Pick and choose
Solutions / inspiration included
c++ exercises

Easy performance gains / pitfalls, writing const correct code
Refactoring an existing analysis

python exercises
Unit testing introduction

24

Exercises repositories
gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/

software-exercises (main exercises for c++ and python)

python-unittesting (intro to pytest and unittesting with python)

cpp-unittesting (intro to unittesting with c++)

25

https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/
https://gitlab.desy.de/fh-sustainability-forum/sustainable-coding-tutorial/software-exercises/

