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What is OmniJet-α?

● First cross-task Foundation model for jet-physics1

● But we aim to build a foundation model for 
all particle physics

● Applied on Calorimeter showers to show 
Adaptability of the architecture2
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1 Birk et al. “OmniJet-α: The first cross-task foundation model for particle physics” 2403.05618 (2024)
2 Birk et al. “OmniJet-αC: Learning point cloud calorimeter simulations using generative transformers” 2501.05534 (2025)
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https://arxiv.org/abs/2403.05618
https://arxiv.org/abs/2501.05534
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● 𝛾-energy 10-100 GeV
● x, y, z in 3D grid (303 voxels)
● hit energy 0-13 MeV
● 100-1700 hits per shower

Why Calorimeter Showers?

4 ILD Collaboration “International Large Detector: Interim Design Report” 2003.01116 (2020)
5 Buhmann et al. “Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed” 2005.05334 (2020)

~30 times longer than jets

● 𝛾-showers in the ECAL in the  proposed 
International Large Detector (ILD) [4] 
= long sequences, sparse spatial structure

● Perfect stress test for architecture scaling
𝛾

Shower Properties

[5]

https://arxiv.org/pdf/2003.01116
https://arxiv.org/abs/2005.05334
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OmniJet-α architecture

● Autoregressive decoder-only Transformer (GPT-1 style)3

● Predicts the next hit-token, one at a time, forming showers sequentially
● GPTs use Byte-Level Tokenizers (codebooksize ~40k)
● VQ-VAE acts as a Tokenizer: it turns continuous calorimeter data into discrete hit-tokens
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Generative 
head

OmniJet-α:  hit:  (x,y,z,E) 

Embedding Transformer

Embedding Transformer Generative 
head

GPT:  word: “hello”   

Tokenizer next hit

next wordTokenizer

Problem: Input data is continuous → VQ-VAE introduces loss of information

VQ-VAE = Vector Quantised-Variational AutoEncoder

!
3 Radford et al, “Improving language understanding by generative pre-training” (2018)
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Loss of information
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VQ-VAE 
encoder

VQ-VAE 
decoder

Hit-tokens

● Going from shower to token-space and back, introduces an error



Henning Rose OmniJet-α for Calorimeters

Upgrades to OmniJet-α
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Direct Spatial Tokenization:

● Instead of compressing hits to tokens, encode coordinates directly in the embedding
● Full spatial precision preserved
● Simpler pipeline → closer to a universal architecture
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Results 
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Hit-Level Distributions:

● Spatial distributions 
are well reproduced

● Hit-energy spectrum 
matches Geant4 over 
3 orders of magnitude
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Results - HCAL
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Plots produced by Martina Mozzanica

● OmniJet-α can also be trained to model pion showers in an HCAL
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Conclusion

● Direct spatial tokenization removes Tokenization bottlenecks 
Full spatial precision, simpler pipeline

● High-fidelity generation across ECAL & HCAL
 Spatial and energy distributions match Geant4

● Architecture remains flexible for future extensions
Same framework can incorporate additional detectors without major changes
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Results 
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Global-Level Distributions:

● Global distributions 
are well reproduced


