Cross-Geometry Fast Electromagnetic Shower Simulation

Universität Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

F. Gaede², G. Kasieczka¹, L. **Valente**^{1*}

¹ University of Hamburg, UHH ² Deutsches Elektronen-Synchrotron, DESY

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

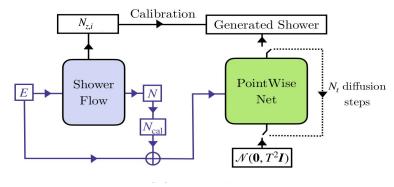
CaloClouds2 Model

1. Shower Flow

Predicts point counts per layer for given incident energy

2. PointWise Net

Generates the 4D point cloud using Shower Flow's point counts

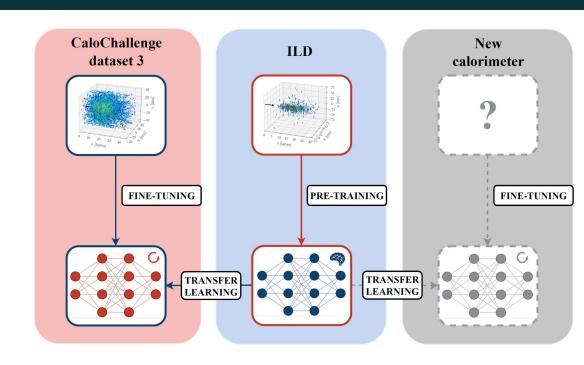


Sampling

E. Buhmann et al. ArXiv: 2309.05704

Transfer Learning

Leveraging knowledge from a pre-trained model (**source** task) to improve performance on a related task (**target** task)



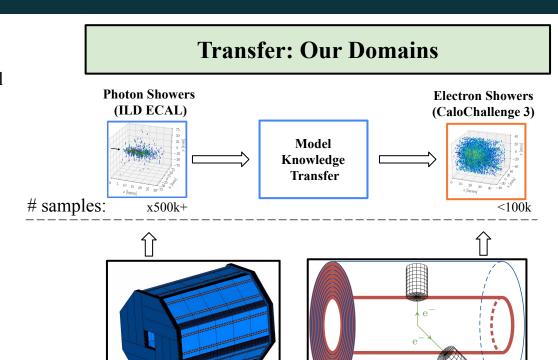
Domains

Key Adaptation Challenges:

- 1. **Geometry mismatch**: Regular \rightarrow Cylindrical
- 2. **Incident energy:**

10-90 GeV \rightarrow 1-1000 GeV Uniform \rightarrow Log-normal

- 3. Max number of points: $\sim 6k \rightarrow \sim 20k$
- 4. **Particle difference**: Photon → Electron showers
- 5. Layer depth mismatch: $30 \rightarrow 45$



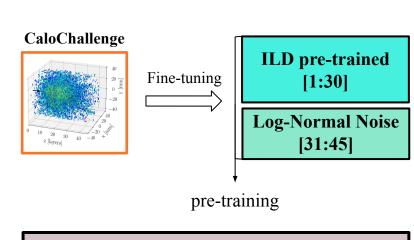
Fine-Tuning: Shower Flow

Challenges:

• Shower Flow architecture is **rigid by design** for adapting to different geometries

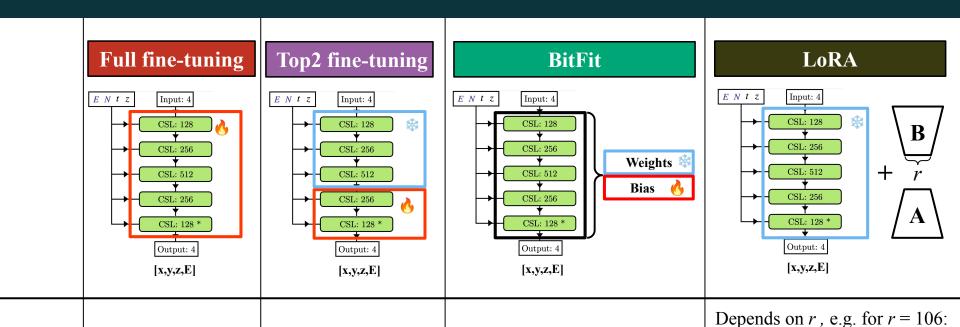
Our Solution:

- **Preserved** original 30 calorimeter layer structure and weights from **ILD** pre-trained backbone
- Extended with 15 additional calorimeter layers to match CaloChallenge's 45 layer geometry
- **Fine-tuning** on CaloChallenge dataset



Adapted Shower Flow

Fine-Tuning: PointWise Net



Lorenzo Valente

524K

(100%)

trainable

parameters

DL Round Table - 2025

87K

(17%)

221K

(44%)

272K

(52%)

Results

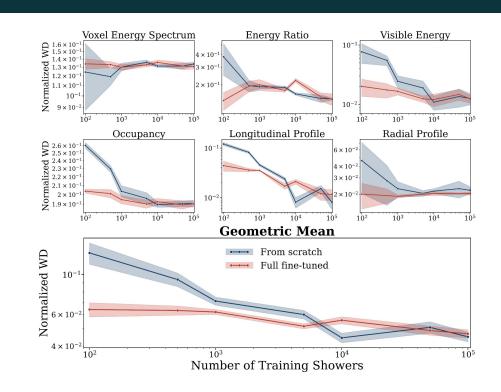
Geometric Mean:

$$\bar{y}_{jk} = \left(\prod_{i=1}^6 y_{ijk}\right)^{1/6},$$

where each training method j across the six physical observables i is calculated for different training shower sizes k

✓ Data Efficiency

Fine-tuned versions matches from scratch performance with orders of magnitude fewer training samples



Results

Parameter-efficient fine-tuning matches full fine-tuned performance with limited training data

Known Limitation

LoRA shows performance degradation in high-data training regimes

Zero Inference Overhead

Parameter-efficient methods maintain original model inference speed



Conclusions

- 44% better performance at 10² training samples than from scratch
- Some observables benefit most Visible Energy & Longitudinal/Radial profile transfer well
- Full fine-tuning > parameter-efficient methods LoRA underperform

Key Findings

• Crossover at $\sim 10^3 - 10^4$ samples - beyond this, from scratch catches up

Paper out soon! \rightarrow 2511.XXXXX

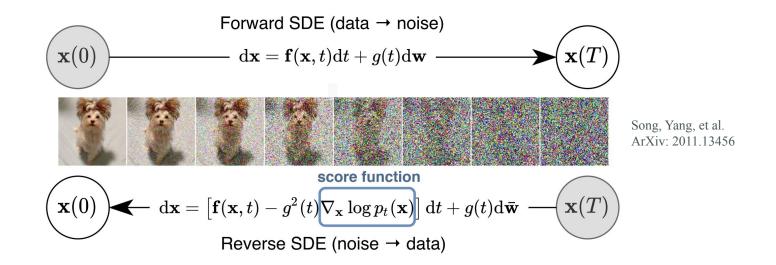
Thanks for the attention!

Contact:

lorenzo.valente@uni-hamburg.de

Backup

Diffusion Models



- Forward Process: Adding noise to input data → pure randomness
- **Reverse Process:** Removing noise step-by-step → generating structured data

Quantitative Measures

> Normalised Wasserstein Distance:

$$l_1(P,Q) = \inf_{\pi \in \Gamma(P,Q)} \int_{\mathbb{D} \times \mathbb{D}} |x - y| \, d\pi(x,y)$$

Where $\Gamma(P,Q)$ is the set of (probability) distributions on $\mathbb{R} \times \mathbb{R}$ whose marginals are P and Q on the first and second factors respectively. The final metric is normalised by the standard deviation σ_P of the Geant4 reference.

➤ Quantile Kullback-Leibler divergence:

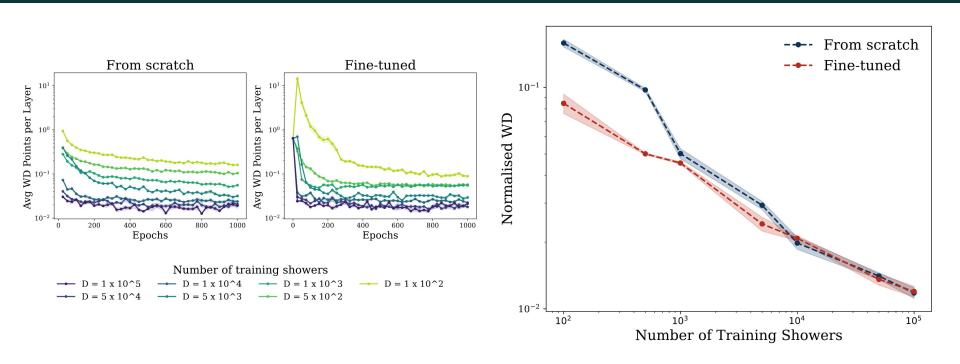
$$D_{\mathrm{KL}}^{\mathrm{quant}}(P||Q) = \sum_{i=1}^{N} P_i \log\left(\frac{P_i}{Q_i}\right)$$

- \triangleright P_i and Q_i are the probabilities of the Geant4 samples and generated sample falling into the i-th bin, respectively.
- The bins are defined by the quantiles of the reference sample:

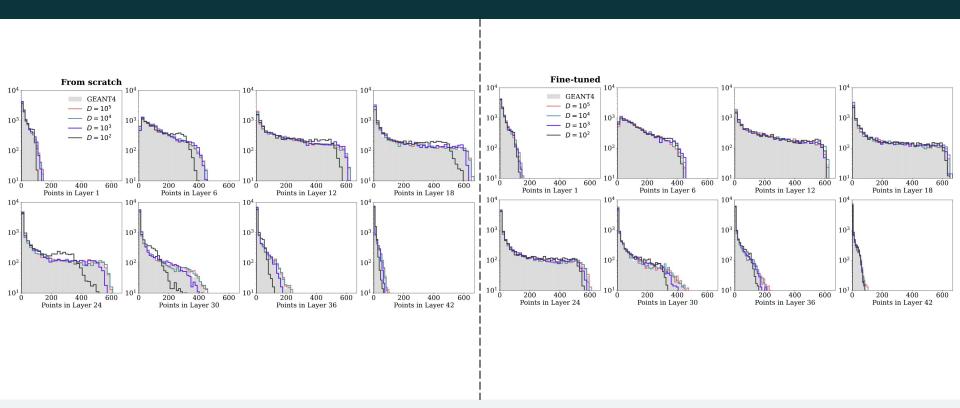
$$bin_edges = \left\{ -\infty, q_{\frac{0}{N}}, q_{\frac{1}{N}}, \dots, q_{\frac{N-1}{N}}, +\infty \right\}$$

With q_{α} being the α -quantile of Geant4 sample.

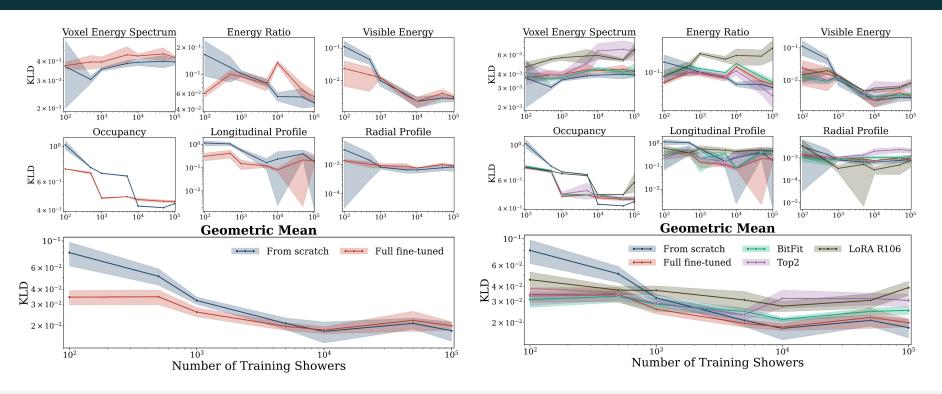
ShowerFlow



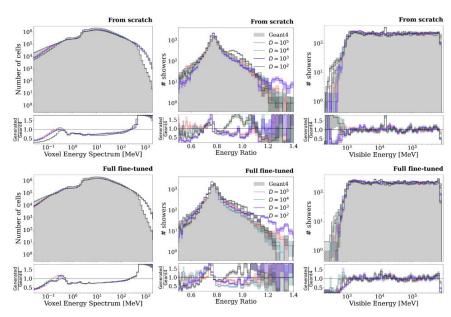
ShowerFlow: points per layer distributions



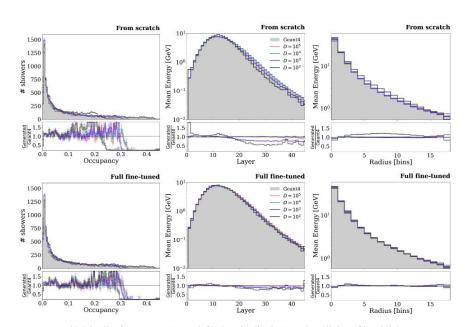
Results: KLD



Observable Distributions



(a) Distributions: cell energy spectrum (left), total deposited energy over incident energy (center), visit energy (right).



(b) Distributions: occupancy (left), longitudinal (center), radial profile (right).

What is LoRA? [1]

Definition:

LoRA *freezes* the original (*pretrained*) model weights and introduces a small number of trainable low-rank matrices into specific layers.

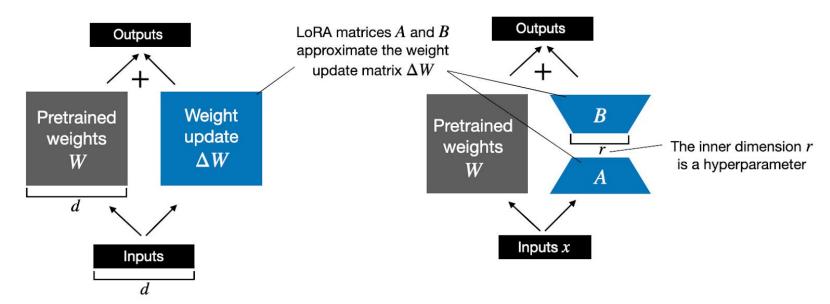
Key Ideas:

Instead of updating the full weight matrix W, LoRA decomposes the update into two smaller matrices A, B, such that the update is $\Delta W = A \times B$ such that:

$$W' = W + \frac{\alpha}{r}\Delta W = W + \frac{\alpha}{r}A \times B$$

- A, B: Low-rank matrices (trainable) r is the rank of LoRA (hyperparm)
- W is the pretrained weights (frozen) α LoRA scaling factor (hyperparm)

Weight update in LoRA



Inverse LoRA study

$$\Delta W = W_{\rm ft} - W_{\rm pre} \in \mathbb{R}^{m \times n}$$

According to the Eckart-Young-Mirsky the optimal rank approximation minimizing Frobenius norm error is:

$$\Delta W = U \Sigma V^{\top} = \sum_{i=1}^{\rho} \sigma_i u_i v_i^{\top}$$
 (SVD)

where $\rho = \min(m, n)$

The reconstruction error is defined as the relative Frobenius norm:

$$\varepsilon_r = \frac{\|\Delta W - \Delta W_r\|_F}{\|\Delta W\|_F}$$

