

A Differentiable Physics Model for Automated Inverse Design in Optics

Friday 14 November 2025 13:05 (10 minutes)

Designing complex optical coatings, such as dispersion-managed mirrors for ultrafast lasers, is a high-dimensional inverse problem traditionally relying on iterative, expert-guided methods. We present a machine learning framework that automates this process by employing an autoencoder with a differentiable, physics-based decoder. This decoder, which analytically solves Maxwell's equations via the Transfer Matrix Method, allows the network to learn the design mapping from target specifications alone. The framework successfully generated a multi-objective dispersive mirror design with performance metrics that match those produced by established commercial optimization software, offering a powerful alternative for rapid and automated design exploration.

Author: CHATTOPADHYAY, Utsa (FS-PRI (Photonics Research and Development))

Co-authors: HEYL, Christoph (FS-PRI (Photonics Research and Development)); TUENNERMANN, Henrik (FS-LA (Research)); HARTL, Ingmar (FS-LA (Lasergruppe)); Prof. AY, Nihat (TUHH)

Presenter: TUENNERMANN, Henrik (FS-LA (Research))

Session Classification: Session 1