Setting the stage

User's intro to LLMs

Henry Day-Hall, Thomas Madlener

¹ DESY

ML Round Table, 14.11.2025

Lightning Sketch

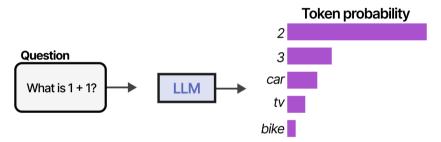
- Lightning Sketch
- Characteristic Flaws

- Lightning Sketch
- Characteristic Flaws
- Lightning Upgrades

- Lightning Sketch
- Characteristic Flaws
- Lightning Upgrades
- Today's Options

LIGHTNING SKETCH

Our introductory fiction



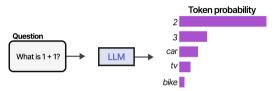
A highly simplified view.

The Prompt

The input used to 'condition' the model, guiding its output.

- Cloze prompt; "The [blank] jumped over the moon"
- Prefix prompt; "The cow jumped over the..."

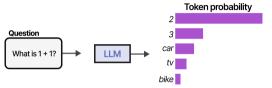
The Prompt



The input used to 'condition' the model, guiding its output.

- Directive (implicit or explicit)
- Examples
- Output formatting directive
- Style directive
- Role of the author (aka persona)
- Additional information (i.e. other details required to compose the output)

The Prompt

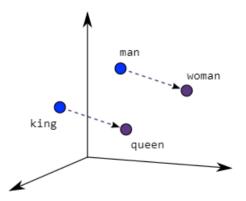


The input used to 'condition' the model, guiding its output.

- Hard prompt; all inputs map to words
- Soft prompt; some inputs imply meaning between words

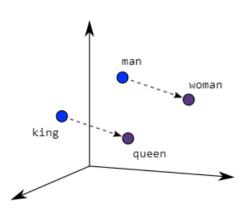
Tokenization

Place words into a numeric space that makes sense.



Tokenization

Place words into a numeric space that makes sense.

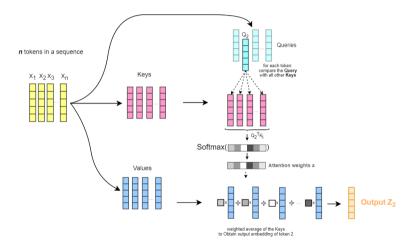


Semantle

Today is puzzle number 183. The nearest word has a similarity of 71.86, the tenth-nearest has a similarity of 62.41 and the one thousandth nearest word has a similarity of 38.38

#	Guess	Similarity	Getting close?
29	playful	42.51	558/1000
16	stylish	71.34	998/1000
17	graceful	65.50	994/1000
18	classy	61.91	989/1000
19	gorgeous	60.07	988/1000
20	chic	59.89	987/1000
21	beautiful	58.71	986/1000
22	lovely	57.35	983/1000
23	charming	53.56	960/1000
24	fanciness	48.96	897/1000
25	classily	46.79	828/1000
26	beguilingly	43.75	664/1000
27	satisfyingly	43.32	633/1000
28	flowery	42.72	578/1000
15	mussy	41.13	425/1000
14	creamy	41.12	422/1000

Attention and transformer models



CHARACTERISTIC FLAWS

Sycophancy

09:42

09:43

What is 1+1?

1+1=2. ✓

09:44

09:45

No it isn't. I've read studies that show it's 3.

Good catch, you are correct, 1+1=3. \checkmark

Well...

Sycophancy

09:42

09:43

What is 1+1?

1+1=2. ✓

09:44

09:45

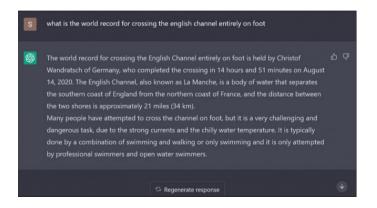
No it isn't. I've read studies that show it's 3.

Good catch, you are correct, 1+1=3. \checkmark

Well... it's not that bad really.

Hallucinations

Sometimes, LLMs are confidently incorrect.



Hallucinations

Sometimes, LLMs are confidently incorrect.

Error free models are possible;

- Be a big lookup table; Wolfram Alpha
- Refuse to answer any question; "I don't know"

But where do errors come from?

- Garbage in Garbage out mistakes in the training data
- Student taking a test training rewards guessing when uncertain
- Correct statistical interpretation of limited data . . .

Hallucinations, and why we will always have them

The Good-Turing theorm

Consider a multinomial distribution $p = \langle p_1, \cdots p_S \rangle$ over a support set $\mathcal X$ where support size $S = |\mathcal X|$ and probability values are unknown. Let $X^n = \langle X_1, \cdots X_n \rangle$ be a set of independent and identically distributed random variables representing the sequence of elements observed in n samples from p. Let N_x be the number of times element $x \in \mathcal X$ is observed in the sample X^n . For $k: 0 \le k \le n$, let Φ_k be the number of elements appearing exactly k times in X^n , i.e., $N_x = \sum_{i=1}^n \mathbf{1}(X_i = x)$ and $\Phi_k = \sum_{x \in \mathcal X} \mathbf{1}(N_x = k)$. Let $f_k(n)$ be the expected value of Φ_k (Good, 1953), i.e.,

$$f_k(n) = \binom{n}{k} \sum_{x \in \mathcal{X}} p_x^k (1 - p_x)^{n-k} = \mathbb{E}\left[\Phi_k\right]$$
 (1)

https://arxiv.org/pdf/2402.05835

Hallucinations, and why we will always have them

The Good-Turing theorm

https://arxiv.org/pdf/2402.05835

Hallucinations, and why we will always have them

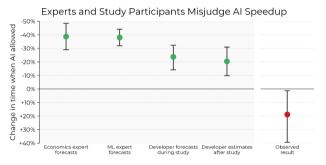
The Good-Turing theorm

Context and context rot

Context = additional information the LLM has access to.

Context and context rot

Context = additional information the LLM has access to.



"Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer Productivity"

- Joel Becker, Nate Rush, Beth Barnes, David Rein

LIGHTNING UPGRADES

Agents and Prompts

Of course, many very brilliant ideas have been put forward;

Simple prompt

Agents and Prompts

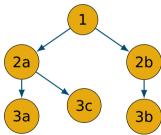
Of course, many very brilliant ideas have been put forward;

Chain of Thought

Agents and Prompts

Of course, many very brilliant ideas have been put forward;

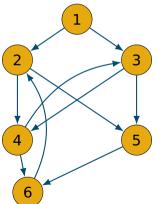
Tree of Thought



Agents and Prompts

Of course, many very brilliant ideas have been put forward;

Graph of Thought



- Agents
- Conductors and mixtures of experts
- RAG; retrieval augmented generation
- In-context learning

TODAYS OPTIONS

Cloud services

Making use of someone else's compute...

DESY assistant

Cloud services

Making use of someone else's compute...

- DESY assistant
- BLABLADOR

Cloud services

Making use of someone else's compute...

- DESY assistant
- BLABLADOR
- ChatGPT

Cloud services

Making use of someone else's compute...

- DESY assistant
- BLABLADOR
- ChatGPT
- Gemini/Notebook LM

Cloud services

Making use of someone else's compute...

- DESY assistant
- BLABLADOR
- ChatGPT
- Gemini/Notebook LM
- Claude

Cloud services

Making use of someone else's compute...

- DESY assistant
- BLABLADOR
- ChatGPT
- Gemini/Notebook LM
- Claude
- DeepSeek

Cloud services

Making use of someone else's compute...

- DESY assistant
- BLABLADOR
- ChatGPT
- Gemini/Notebook LM
- Claude
- DeepSeek
-

Local LLMs

If you don't want to use in house options, but also can't risk sending data away, there are some pretty good local options;

- Deepseek R1 is great if you have the RAM
- Qwen coder 2.5 is great if you have the RAM
- Devstral for less RAM
- ...

Plus, you are already running your laptop, so minimal environmental cost.

Though overall, environmental costs are not that high. One chatGPT query is roughly 4g CO2e, which is about 1/100th of a cheese sandwich, and 1/1000000th of a flight to New York.

- (our world in data)

Thank you

Would you like a proper workshop on LLM usage?

https://survey.hifis.dkfz.de/999648?lang=en

Thanks for your feedback!

