HIGHLY COMPACT SANDWICH STRUCTURE FOR A GRANULAR ELECTROMAGNETIC ECAL-P CALORIMETER

Grzegorz Grzelak, Piotr Marczak, Piotr Zbińkowski, Aleksander F. Żarnecki

University of Warsaw, Faculty of Physics (on behalf of LUXE ECAL-P group) International Workshop on Future Linear Colliders, LCWS-2025

Compact high density sampling calorimeter

Fig. 1: ECAL-P baseline design and its sandwich structure

- 21 tungsten layers 3.5 mm $1X_0$ thick, 20 layers of 320 μ m thick CALICE/Hamamatsu Silicon Sensors
- Six 9×9 cm² Si Sensors per layer subdivided into 16×16 (5.5×5.5 mm²) pads inserted into 1 mm gaps
- Fiducial volume of the calorimeter (XYZ): $540 \times 90 \times 90 \text{ mm}^3$
- Tungsten purity 99.95 99.98%, $\rho = 19.25$ g/cm³, effective density of fiducial volume ~ 15 g/cm³
- Kapton readout fan-outs and HV electrode attached to sensors with conductive silver glue
- Front End Electronics outside the active volume of the calorimeter

Mechanical structure

Fig. 2: Mechanical structure of ECAL-P prototype

- Duraluminum mechanical body, precision of CNC machining 10 μ m, precision of assembly 100 μ m
- \bullet Combs and ribs structure to hold the tungsten plates, $80~\mu\mathrm{m}$ gap clearance w.r.t. the nominal thickness
- Precise T-Frames to support the Si Sensor sandwiches and FEBs electronics
- Pins on T-Frames define the precision of the Si Sensor alignment between the tungsten plates

Precision support for Silicon Sensors and FEBs

Fig. 3: Duraluminum T-Frame supporting Silicon Sensors and Front End Boards

- M2.5 mm screws used to fix all components to the T-Frames
- 250 μ m thick Carbon Fiber (CF) plates to strengthen the Silicon sandwich structure
- Nominal gap between neighbor CF plates: $200 \ \mu \text{m}$
- Nominal gap between active area of neighbor Silicon Sensors: 1.7 mm
- Double sides chipset of FLAXE ASICs, 4.5 mm pitch, 200 μ m clearance

Machining of duraluminum T-Frame

Fig. 4: T-Frame during machining and the remainder of the substrate plate

- Duraluminum: G.AL C330 precision milled plate, Alloy: EN AW-702 [AlZn5,5Mg1,5]
- \bullet Machining on CNC table after leveling to $10~\mu\mathrm{m}$
- Two approaches: starting from 6 mm and 3 mm duraluminum plates
- T-Frame shape cut from the substrate after machining to minimize mechanical tension during fabrication
- Final afterprocesing by sandblasting to relax mechanical stress and improve the flatness

CMM metrology of tungsten plates

XYZ dimensions (mm)			
Plate	X	Υ	Z
X1	555.1039	100.0907	3.5593
X2	555.1047	100.0864	3.5429
Х3	555.1388	100.0964	3.5407
B1	555.0785	100.0640	3.5451
B2	555.0654	100.0458	3.5547
B3	555.0637	100.0366	3.5701
Nom	555.00±0.20	100.00±0.20	3.50±0.05

Fig. 5: Survey on CMM table, XYZ dimensions and example of thickness profiles, difference to nominal 3.5 (mm)

- Pilot orders: Xiamen Honglu Industry CO. LTD. and Beijing AT&M/CISRI
- XY dimensions within specification. Z profiles on overage 50 μ m thicker, flatness deviations $\sim 50-150~\mu$ m

Tungsten plates inside ECAL-P mechanical frame

Fig. 6: Tungsten plates inserted into the combs

- Precise combs and ribs structure (bottom, side, middle and upper) to hold the tungsten plates and T-Frames
- After CMM survey the nominal spacing between tungsten plates increased from 1.0 mm to 1.2 mm

High granularity Silicon Sensors: precise tooling

Fig. 7: Vacuum jigs for precise manufacture of Silicon sandwich at IFIC Valencia

- Multistep procedure: gluing of Si+Kaptons with conductive silver glue, curing in oven at 140 °C
- Next gluing Carbon Fiber, dedicated jigs to ensure the required precision, vacuum holders
- Robotic glue deposition, glue dots 50 μ m, total thickness of all 20 test Si sandwiches below 900 μ m

ECAL-P prototype at DESY Test Beam

Fig. 8: ECAL-P prototype instrumented with two towers at DESY 5 GeV Test Beam in June 2025

- Silicon Sandwich before first tungsten plate as an "pre-shower" MIP detector
- Readout electronics: dedicated FLAME ASICs on FEBs developed for Test Beam by AGH Kraków

