
Markus Schumacher
on behalf of but not blessed by the SUSFECIT Research Network
(Aachen University, Bonn University, CERN, DESY, Freiburg University,
Göttingen University, KIT, Siegen University, Wuppertal University, Öko-Institut e.V.)

Meeting of KET Computing and Software Panel, 27. October 2025

Antrag auf Einrichtung eines Graduiertenkollegs

Masse und Symmetrien nach der Entdeckung

des Higgs-Teilchens am LHC

Physikalisches Institut

Albert-Ludwigs-

Universität Freiburg

Albert-Ludwigs-Universität Freiburg
Physikalisches Institut
Hermann-Herder-Str. 3

79104 Freiburg im Breisgau

Sprecher: Prof. Dr. Stefan Dittmaier

Vorgesehene Förderperiode: 1.4.2015 – 30.9.2019
Antragstermin: 27.2.2014

28. Februar 2014

SUSFECIT
Sustainable Federated Compute Infrastructures

The Consortium

1

Associated Partners

Simone Campana
Erik Bründermann
Achim Streit
Kathrin Valerius

Marc Schumann
Dirk von Suchodoletz

Christian Gutt Christian Zeitnitz

Partners

Achim Stahl Martin Gasthuber Philip Bechtle

Manuel Giffels Jens Gröger Markus Schumacher

Arnulf Quadt

The Basic Idea of SUSFECIT

2

Sloppy: „Perform calculations when and where sun is shining or wind is blowing“

Ø A bit more precise:
Adapt the amount of calculations and energy consumption to the temporal
and local availability of renewable energies (RE) to be used in compute centres
e.g. exploit that compute jobs are “easily“ dispatchable in time and space

Ø Means of adaption:
- shut down (parts) of cluster
- reduce clock frequency of CPUs (GPUs)
- transfer jobs to sites where enough RE is available

Ø Requirements on hardware:
- overprovisioning of resources to compensate for volatility of RE and dark doldrums
- include energy storage (in/close-by compute centres) in concept to compensate for
volatility of RE and dark doldrum

Ø Requirements on strategy of operation/ software ecosystems:
- Forecast of available RE with good temporal and local resolution (and requested compute time)
- Orchestration of jobs in time and on compound of sites according to available RE and compute demands

(incl. check pointing for transfer of jobs between sites)
- Accounting of elapsed time, consumed energy, produced CO2 footprint (incl. LCA), used water, …

SUSFECIT
Sustainable Federated Compute Infrastructures

3.3. BENCHMARK-RUNTIMES CHAPTER 3. INTEL CPUS AT BFG

Figure 3.5: HEPScore23-values and power consumption per vCore with respect to
the configured clock-frequency of an ATLAS-BFG node with Intel CPUs. 40 vCores
were utilized for all measurements. The bar chart on the bottom visualizes the
provided performance per Watt (per vCore/node/server), therefore displaying the
efficiency of the given frequency with 40 vCores.

quency of 2000MHz, a clock-frequency of 2400MHz is approximately as efficient as
a frequency of 2000MHz. As a consequence, two possible operational configurations
need to be considered; one at 2000MHz and the other one at 2400MHz. Since their
efficiency is similar, the two configurations only differ in their total performance
(provided HEPScore23-value) and power consumption. Therefore the choice of the
operational configuration is purely dependant on how much performance is needed.

3.4 Analysis of benchmark-runtimes
When investigating the power consumption and performance of a benchmark-run in
fig. 3.1, it is noticed that the individual benchmarks also have individual runtimes.
Furthermore, after analyzing the differences in performance of a node in depen-
dence of vCore and clock-frequency variation the question of their impact on the
benchmarks runtimes arises. Answering this question is also relevant for effectively
scheduling the benchmarks and their measurements consecutively using the cron
daemon (section 2.3.1).

Figure 3.6a shows a decline of the runtime with respect to a higher clock-
frequency. This anti-correlation of the benchmark-runtimes is expected, since a
higher performance indicates that more processes can be completed faster. The

14

Links to PUNCH4NFDI, EGI, WLCG via
partners and associated partners
Associated partners will act as
critical reviewers, alpha-users and multiplicators

3

The „House“ of SUSFECIT and its Research Areas (RAs)

RA4 Digital twin
for siumualtion and optimization
of interlinked ecosystems above

RA1
Forecasting

Development of overall strategy
Links btw. three ecosystems

RA2
Orchestration

RA3
Accounting

Goals:
Ø Increase the environmentally sustainable use

and opera5on of federated compute resources.
Ø Raise awareness of the impact of scien5fic

compu5ng on the CO2 footprint
Ø Train talented early career scien5sts

in cu?ng-edge technologies

Dissemination:
Ø First developed and deployed for

ATLAS, CMS and ET
Ø Later:

§ KATRIN, XENONnT, LXZD
(neutrino and astro-particle physics)

§ Experiments at PETRA-III, EU-XFL, ESRF
(synchrotron radiation physics)

Ø Perhaps: Further use cases identified

R. Florian von Cube ETP/KITFIDIUM Collaboration Meeting

COBalD/TARDIS are tools for dynamic resource scheduling developed at KIT and
contributions from our partners in Freiburg and Bonn
For transparent use, resources are integrated into common overlay batch system
Compute elements (CE), established in the grid-context, act as single points of entry

Also perform authentication and authorisation

Schedule resources based on current demand through proxy user
Provide WLCG/experiment software through container layers

3

COBalD / TARDIS

RA5 Development and deployment of tutorials, creation of
 awareness and education of scientists (all, ~ 0.5 FTE)

Dwayne Spiteri, University of Glasgow Scotgrid Simulation 4

Simple Simulation Schematic
Simulation.py

1 Specify variable parameters of the simulation mainly:
• The number and type of nodes your cluster is made from

(ampere, dell, grace)
• The amount of starting jobs and how many jobs are submitted per hour
• Maximum length of the simulation

 JobFactory.py
• Create different kinds of jobs from different VO’s
• Assume jobs run for samples amount of time drawn from

previously measured distributions (for testing all jobs are
set to be 5hrs long)

• Require amounts of memory and cores to be used

3

Cluster.py

• Spins up a cluster to run specified workloads

• Defines things like amount of memory, cores
available to outside sources from input worker
nodes

• Define how you run the cluster in the event you
want to try and run it differently - clock down
nodes at certain times of day for example

5

JobScheduler.py
• Create a programme of work to be run on a cluster
• Initialises jobs from ones requested from types of ones

available

• Updates with jobs to be submitted to the cluster per time-
step

4

WorkerNode.py
• Create different kinds of worker nodes
• Different types of worker node Attributes like hostnames,

cores, memory, max power consumed, frequency
• Formulas for scaling power consumption
• Methods for automatically clocking up and down nodes
• Updates with whether the job is finished per timestep

2

DataLogger.py
• Formats output statistics

• Total (and average): CPU used, time elapsed, jobs started/
completed, (peaktime) power used and estimated C02e emissions.

7

• Run Simulation
• Calculates the total power used and CO2e

emitted per timestep (10 minutes)

• Takes Jobs from the scheduler if able

• Passes data from the worker nodes to the
DataLogger

• Ends when you run out of work, or out of
time

6

4

RA1 Forecasting and RA2 Orchestration
RA1 Forecasting (lead & coordinated by Bonn, P. Bechtle; partners: AC, DESY, Öko; ~ 1 FTE)
• - forecasting of available RE (and price) with good temporal and spatial resolution
• - estimation of required overprovisioing of resourcen (and local energy storage)
• - optimization to minimal environmental impact incl. LCA of machines and infrastructure, …

Develoment of ecosystem to connect and evaluate available public data bases
and its interfaces to COBalD/TARDIS, AUDITOR, Digital Twin

RA2 Orchestration (lead & coordinated by KIT, M. Giffels; BN, DESY, GÖ, FR; ~ 3.5 FTE)
• Adaption of jobs distribution to availability of RE
• Include concepts and tools to shut down or throttle clock frequency of parts of cluster
• Implementation of dynamic resource limit in COBald/TARDIS
• Development and Implementation of checkpoint-restore for compute jobs

Advancement of ecosystem COBalD/TARDIS and
its interfaces to Forecasting, AUDITOR, Digital Twin

Operation of Breathing Sun Clusters at several sites and evaluation of performance
(limit on number of floating nodes, turn around time for smooth operation, …)R. Florian von Cube ETP/KITFIDIUM Collaboration Meeting

COBalD/TARDIS are tools for dynamic resource scheduling developed at KIT and
contributions from our partners in Freiburg and Bonn
For transparent use, resources are integrated into common overlay batch system
Compute elements (CE), established in the grid-context, act as single points of entry

Also perform authentication and authorisation

Schedule resources based on current demand through proxy user
Provide WLCG/experiment software through container layers

3

COBalD / TARDIS

5

RA3 Accounting and RA4 Digital Twin
Eur. Phys. J. C (2025) 85:265 Page 3 of 8 265

Fig. 1 Overview of the
AUDITOR ecosystem.
AUDITOR accepts records
from collectors, stores them in a
PostgreSQL database and offers
these records to plugins, which
act based on the records

– [meta] (HashMap[String → [String]])
– [components] (Array)

– name (String)
– amount (Integer)
– [scores] (Array)

• name (String)
• value (Float)

– start_time (Datetime, UTC)
– stop_time (Datetime, UTC)
– runtime (Integer,seconds, output-only)

2.1.2 Interface

Records can be sent to AUDITOR via the POST method of
the REST endpoint /record, which primarily accepts com-
plete records, but also records without stop_time, which
can be provided later. This is useful for certain collectors
that, due to the nature of their source, can only register state
changes i.e. the resource became available and the resource
became unavailable.

In particular, this avoids the requirement of a collector to
keep track of the state in between state changes. Instead,
AUDITOR manages the state by allowing records to be
finalised at a later point in time. This is not only more con-
venient but also improves the crash resilience of collectors.
Records are transferred to AUDITOR as JSON payload in an
HTTP request. Upon receiving, AUDITOR performs input
validation on each record during the de-serialisation of the
JSON object, and it rejects records with strings contain-
ing forbidden characters or with non-positive values. This
avoids accidental wrong input and malicious attacks such as
SQL injections. The provided client libraries perform exactly
the same input validation locally, meaning that unacceptable
input will be rejected even before being sent to AUDITOR.

Plugins can request a list of records via the GET method
of the endpoint /records which receives all records from

the database. Alternatively, the range of records received can
be limited based on stop_time or start_time with
/records?start_time[gt]=<timestamp1>
&start_time[lt]=<timestamp2>, respectively.

The <timestamp> is required to be in RFC3339 [14]
format, and the time zone is assumed to be UTC if not speci-
fied otherwise. Furthermore, AUDITOR offers advanced fil-
tering options to refine record queries. Users can combine any
record fields, such as start_time, stop_time, meta,
component, and runtime, to narrow down their search.
Operators are used in conjunction with these fields to define
ranges for time fields (gt, gte, lt, lte) and to specify
inclusion or exclusion criteria for meta and component fields
(contains, does not contain). This comprehensive
filtering capability allows for highly specific and targeted
queries, enhancing the speed of data retrieval.

2.1.3 Implementation

AUDITOR is written in the Rust programming language
and uses the actix- web library2 to implement the REST
interface. Interaction with the PostgreSQL database is man-
aged by the sqlx3 library, which offers compile-time SQL
query verification and SQL table migration. In order to better
observe changes, logging is performed with the tracing
library,4 which outputs machine-readable traces with spans
such that even performance-related metrics can be derived
from the traces.

Metrics are exported to a Prometheus [15] scraper via the
/metrics endpoint. These metrics include HTTP request
metrics as well as a diverse set of database metrics. The latter
can be partially or fully disabled to avoid potential negative
performance impacts for large databases.

2 https://actix.rs/.
3 https://github.com/launchbadge/sqlx.
4 https://github.com/tokio-rs/tracing.

123

RA3 Accounting (lead and coordinated by Freiburg, M. Böhler; partners KIT, Öko-Institut; ~2 FTE)
à full accounting of environmental impact of scientific computing
• New plugin to determine energy consumption and CO2 footprint for compute jobs
• Extension for time dependent cklock rate, GPUs, …
• Extension to include storage, data transfer, network footprint
• Include new KPI and models from Öko-Institut in accouting pipeline
• Include water usage, embedded CO2, depletion of abiotic resources

Advancement of ecosystem AUDIOTR COBalD/TARDIS and
its interfaces to Forecasting, COBalD/TARDIS and Digital Twin

3.3. BENCHMARK-RUNTIMES CHAPTER 3. INTEL CPUS AT BFG

Figure 3.5: HEPScore23-values and power consumption per vCore with respect to
the configured clock-frequency of an ATLAS-BFG node with Intel CPUs. 40 vCores
were utilized for all measurements. The bar chart on the bottom visualizes the
provided performance per Watt (per vCore/node/server), therefore displaying the
efficiency of the given frequency with 40 vCores.

quency of 2000MHz, a clock-frequency of 2400MHz is approximately as efficient as
a frequency of 2000MHz. As a consequence, two possible operational configurations
need to be considered; one at 2000MHz and the other one at 2400MHz. Since their
efficiency is similar, the two configurations only differ in their total performance
(provided HEPScore23-value) and power consumption. Therefore the choice of the
operational configuration is purely dependant on how much performance is needed.

3.4 Analysis of benchmark-runtimes
When investigating the power consumption and performance of a benchmark-run in
fig. 3.1, it is noticed that the individual benchmarks also have individual runtimes.
Furthermore, after analyzing the differences in performance of a node in depen-
dence of vCore and clock-frequency variation the question of their impact on the
benchmarks runtimes arises. Answering this question is also relevant for effectively
scheduling the benchmarks and their measurements consecutively using the cron
daemon (section 2.3.1).

Figure 3.6a shows a decline of the runtime with respect to a higher clock-
frequency. This anti-correlation of the benchmark-runtimes is expected, since a
higher performance indicates that more processes can be completed faster. The

14

RA4 Digital Twin (lead and coordinated by DESY, D. Spiteri; partner BN; ~1 FTE)
Extend simulation proto type for single site DESY to
§ Geograhical distributed, federated IT infrastructure with job and data transfer
§ Clock rate trottling, breathing sun/wind clusters
§ Realistic job mixes including check pointing
Advancement of simulation framework and implemention fo feedback loops
And interfaces to Forecasting, COBalD/TARDIS and AUDITIOR

Dwayne Spiteri, University of Glasgow Scotgrid Simulation 4

Simple Simulation Schematic
Simulation.py

1 Specify variable parameters of the simulation mainly:
• The number and type of nodes your cluster is made from

(ampere, dell, grace)
• The amount of starting jobs and how many jobs are submitted per hour
• Maximum length of the simulation

 JobFactory.py
• Create different kinds of jobs from different VO’s
• Assume jobs run for samples amount of time drawn from

previously measured distributions (for testing all jobs are
set to be 5hrs long)

• Require amounts of memory and cores to be used

3

Cluster.py

• Spins up a cluster to run specified workloads

• Defines things like amount of memory, cores
available to outside sources from input worker
nodes

• Define how you run the cluster in the event you
want to try and run it differently - clock down
nodes at certain times of day for example

5

JobScheduler.py
• Create a programme of work to be run on a cluster
• Initialises jobs from ones requested from types of ones

available

• Updates with jobs to be submitted to the cluster per time-
step

4

WorkerNode.py
• Create different kinds of worker nodes
• Different types of worker node Attributes like hostnames,

cores, memory, max power consumed, frequency
• Formulas for scaling power consumption
• Methods for automatically clocking up and down nodes
• Updates with whether the job is finished per timestep

2

DataLogger.py
• Formats output statistics

• Total (and average): CPU used, time elapsed, jobs started/
completed, (peaktime) power used and estimated C02e emissions.

7

• Run Simulation
• Calculates the total power used and CO2e

emitted per timestep (10 minutes)

• Takes Jobs from the scheduler if able

• Passes data from the worker nodes to the
DataLogger

• Ends when you run out of work, or out of
time

6

Conclusions (repetition for your reading pleasure only)

6

Ø 2024: electricity consumption of compute centres in D 20 billion kWh in 2024 (4% of total), 7.3 t CO2 footprint
Ø Next 5 years: energy consumption expected to double ßà goal of CO2 neutrality in D in 2045

à Advance environmental sustainability of scientific computing in SUFECIT project SUSFECIT
Sustainable Federated Compute Infrastructures

Goals:
Ø increase the environmentally sustainable use and operation

of federated compute infrastructures
Ø raise awareness of the impact of scientific computing

on CO2 footprint from ErUM communities
Ø train talented early career scientists in cutting-edge technologies

Hope:
Ø SUSFECIT will provide tools to help reach this goal and

dissemination to ErUM communities and beyond will be successfulRA4 Digital twin

RA1
Forecasting

RA2
Orchestration

RA3
Accounting

R. Florian von Cube ETP/KITFIDIUM Collaboration Meeting

COBalD/TARDIS are tools for dynamic resource scheduling developed at KIT and
contributions from our partners in Freiburg and Bonn
For transparent use, resources are integrated into common overlay batch system
Compute elements (CE), established in the grid-context, act as single points of entry

Also perform authentication and authorisation

Schedule resources based on current demand through proxy user
Provide WLCG/experiment software through container layers

3

COBalD / TARDIS

Dwayne Spiteri, University of Glasgow Scotgrid Simulation 4

Simple Simulation Schematic
Simulation.py

1 Specify variable parameters of the simulation mainly:
• The number and type of nodes your cluster is made from

(ampere, dell, grace)
• The amount of starting jobs and how many jobs are submitted per hour
• Maximum length of the simulation

 JobFactory.py
• Create different kinds of jobs from different VO’s
• Assume jobs run for samples amount of time drawn from

previously measured distributions (for testing all jobs are
set to be 5hrs long)

• Require amounts of memory and cores to be used

3

Cluster.py

• Spins up a cluster to run specified workloads

• Defines things like amount of memory, cores
available to outside sources from input worker
nodes

• Define how you run the cluster in the event you
want to try and run it differently - clock down
nodes at certain times of day for example

5

JobScheduler.py
• Create a programme of work to be run on a cluster
• Initialises jobs from ones requested from types of ones

available

• Updates with jobs to be submitted to the cluster per time-
step

4

WorkerNode.py
• Create different kinds of worker nodes
• Different types of worker node Attributes like hostnames,

cores, memory, max power consumed, frequency
• Formulas for scaling power consumption
• Methods for automatically clocking up and down nodes
• Updates with whether the job is finished per timestep

2

DataLogger.py
• Formats output statistics

• Total (and average): CPU used, time elapsed, jobs started/
completed, (peaktime) power used and estimated C02e emissions.

7

• Run Simulation
• Calculates the total power used and CO2e

emitted per timestep (10 minutes)

• Takes Jobs from the scheduler if able

• Passes data from the worker nodes to the
DataLogger

• Ends when you run out of work, or out of
time

6

Development of overall strategy
Links btw. three ecosystems

Backup

RA5 Education & dissemination, role of associated partners, ….
Thorough documentation, development of tutorials and conduction of educational workshops
in order to foster new use cases and to disseminate the developed concepts and ecosystems to a wider audience
Workshops shall be advertised and organized in cooperation with the ErUM-Data Hub.

Feedback by and roll out to WLCG via S. Campana (WLCG project leader)

Connection link, alpha-users and multiplicators in respective community:
KAT community via K. Valerius (KIT) and M. Schumann (Freiburg)
KFS community via C. Gutt (Siegen) and KFB community via E. Bründermann (KIT)

Heads of the HPC centres at Freiburg (D. von Suchodoletz) and at the SCC at KIT (A. Streit)
provide feedback from a computer science and resource provider point of view

Links to other BMFTR-funded research networks such as “Federated storage FUSE”, to PUNCH4NFDI, EGI …
via individuals from (associated) partner institutes, who are active members (of boards) in this initiatives

The ErUM-Data Hub kindly agreed that it will provide support for dissemination of developed concepts and
technologies and for conducting workshops and tutorials to train scientists in all ErUM communities.

