# Pulse reconstruction for ECAL-P method from ZEUS BAC analysis (1992)

Aleksander Filip Żarnecki



November 3, 2025

#### Introduction



## My phd thesis

Method presented today was developed for the analysis of the ZEUS backing calorimeter (BAC) prototype beam test results and presented in my PhD thesis

Wyniki testów i symulacji kalorymetru uzupelniajacego dla detektora ZEUS

(*Test and simulation results of the ZEUS detector backing calorimeter*, supervised by Halina Abramowicz, University of Warsaw 1992).

Main results of the study were published in NIM A313 (1992) 126-134, but without BAC pulse reconstruction method details, which are only described in Appendix A of the thesis.

Presentation today is mainly based on this appendix.

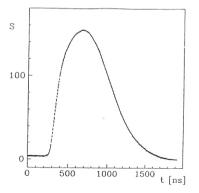


## **BAC** signals

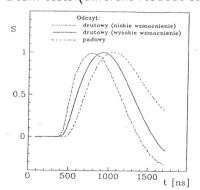
pulses are probed by FADC with 96 ns clock

Average puls shape after pre-amplifier and shaper electronics:

#### Lab test results:



## Beam tests (different readout streams):





## **Pulse scaling**

The output pulse has a fixed shape with amplitude proportional to the input charge, which we want to reconstruct. The FADC measurements should be described by the dependence:

$$a_i = A \cdot f(t_i) + f_r$$

where i - numbers FADC measurents

t<sub>i</sub> - is measurement time

 $a_i$  - is the amplitude measured at  $t_i$ ,

f(t) - describes the normalized average pulse shape (shape template),

 $f_{\rm r}$  - is the reference (pedestal) level, including electronics and noise,

A - is the amplitude we are looking for.



#### Pulse model

The next step is to present the template amplitude for each measurement by its value at nominal measurement time and correction depending on time shift:

$$f(t_i) = f_i + f'_i \cdot \delta t,$$

where  $f_i$  - is the template signal value at time i\*96 ns,

 $f'_i$  - is the template shape derivative value at the same time,

 $\delta t$  - is the time shift between the actual pulse and the template.

The key assumption here is that this shift is small:  $|\delta t| \leq 48$  ns.

We can then rewrite the initial formula as:

$$a_i = A \cdot (f_i + f'_i \cdot \delta t) + f_r$$
.



#### **Problem solution**

We have vector of measurements  $a_i$  described by

$$a_i = A \cdot (f_i + f'_i \cdot \delta t) + f_r$$
.

Finding amplitude A and time shift  $\delta t$  is an algebraic problem, looking for coordinates of vector  $a_i$  in the base of vectors  $f_i$  and  $f_i'$ . The solution is equivalent to the least-square fit result.



#### **Problem solution**

We have vector of measurements  $a_{\rm i}$  described by

$$a_i = A \cdot (f_i + f'_i \cdot \delta t) + f_r$$
.

Finding amplitude A and time shift  $\delta t$  is an algebraic problem, looking for coordinates of vector  $a_i$  in the base of vectors  $f_i$  and  $f_i'$ . The solution is equivalent to the least-square fit result.

Solution is:

$$\begin{split} \delta t &= \frac{\beta C_1 \, - \, C_2}{\alpha C_2 \, - \, C_1} \,, \\ A &= \frac{C_1}{1 \, + \, \alpha \, \delta t} \,, \end{split}$$

with: 
$$C_1 = \sum_i a_i g_i$$
 
$$C_2 = \sum_i a_i g_i'$$
 
$$\alpha = \sum_i f_i' g_i$$
 
$$\beta = \sum_i f_i g_i'$$

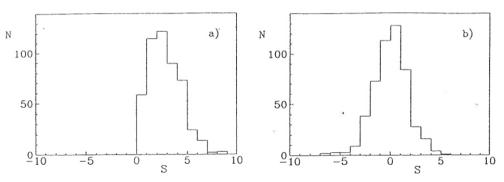
where  $g_i$  and  $g_i^\prime$  are scaled template shape and derivative vectors:

$$\begin{split} \sum_{i} g_{i} \; &=\; \sum_{i} g'_{i} \;\; = \;\; 0 \\ \sum_{i} g_{i} \cdot f_{i} \; &=\; \sum_{i} g'_{i} \cdot f'_{i} \;\; = \;\; 1 \end{split}$$



#### Results

Pad tower signal distribution for old method (maximum finding) and new reconstruction:

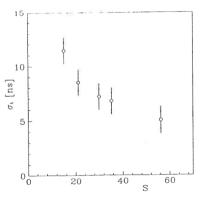


Maximum finding gives bias, which is removed in the new method...



#### **Results**

Time shift reconstruction precision as a function of the signal amplitude:

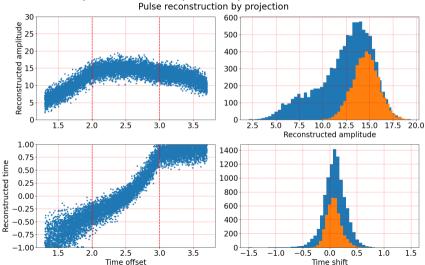


 $\mathcal{O}(10\%)$  time shift reconstruction possible

(96 ns FADC clock)

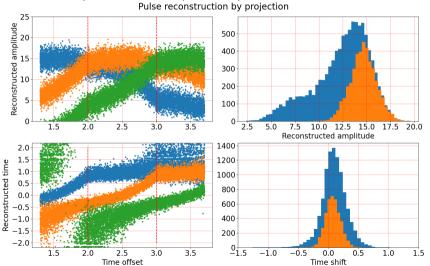






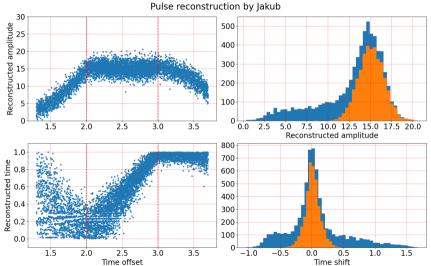


Modeling based on the expected ECAL-P pulse shape



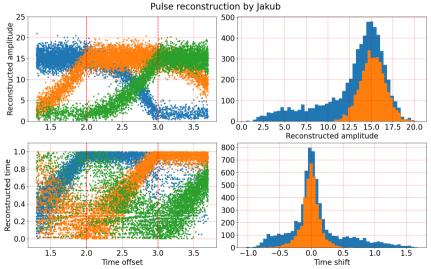


Results from standard deconvolution method





Results from standard deconvolution method





#### First comparison

"accepted" - higher than earlier and later

For amplitude A=15, Noise = 1.3

Template fit method (6 samples, reference pulse starting at 2.5)

Average reconstructed amplitude: 12.379 +/- 2.882 Average reconstructed time shift: 0.095 +/- 0.202 Average accepted amplitude: 14.629 +/- 1.343 Average accepted time shift: 0.079 +/- 0.125

Jakub's method (with perfect common mode subtraction!)

Average deconvoluted amplitude: 13.097 +/- 3.647 Average deconvoluted time shift: 0.065 +/- 0.421 Average accepted amplitude: 15.177 +/- 1.446 Average accepted amplitude: -0.015 +/- 0.150