
Embedded System Design
Lab Course

T. Hemperek, H. Krüger, M. Lemarenko, M. Schnell

Bonn University

5th Detector Workshop of the Helmholtz Alliance “Physics at the Terascale”
14 – 16 March 2012, Physikalisches Institut Universität Bonn

FPGA School

Tutorial 1: Creating an embedded system

Tutorial 2: Adding EDK IP

Tutorial 3: Adding custom IP

Tutorial 4: Embedded system simulation

Tutorial 5: Embedded ChipScope debugging

Tutorial 6: MicroBlaze SPI flash bootloader

• Step-by-step walk through tutorials

• All tutorials build upon another

• For every tutorial there is a pre-compiled solution found in the directory
EDK132_Lab<X>_Solution (X standing for the number of the tutorial)

• The solutions are accumulative: EDK132_Lab<N>_Solution includes the solutions of all
tutorials M with M<N. For example, if you want to do Tutorial 4 and you haven’t done
Tutorial 3 you can start from EDK132_Lab3_Solution.

• The project output files from that directory can be used to avoid long compile times
(pre-compiled core, ask instructors)

Outline of the Lab Course

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 2

• Verilog is used as HDL option for this tutorial – with only a few exceptions (VHDL would
be supported by the tool chain as well)

• Getting started (Linux):

– user: fpgaschool password: bonn2012

– To set up environment type xilinx in your shell

– Some examples need a terminal application. Use cutecom and set device to
/dev/ttyUSB0

• Location of the tutorial files

– user created project files: ~/EDK/EDK_Tutorial

– solution files (precompiled): ~/EDK/EDK132_Lab<X>_Solution/EDK_Tutorial

• Start scripts for the Xilinx executables

• ISE (Project Navigator): ise

• XPS (Xilinx Platform Studio): xps
should always be called from within ISE to load proper project settings

• SDK (Software Development Kit): xsdk

General Remarks

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 3

• Hardware

– Spartan-6 LX9 MicroBoard (http://em.avnet.com/s6microboard)

– Mini-USB cable

– Ethernet cable

• Software

– ISE WebPack (http://www.xilinx.com/tools/webpack.htm) with EDK add-on or ISE
Embedded Edition version 13.2

– USB-to-UART driver (Silicon Labs CP210x)

– USB-to-JTAG driver (Digilent driver)

– Xilinx board support files for Spartan-6 LX9 MicroBoard XBD (for EDK 13.2) files
(available from Avnet)

• Additional reading

– Support files download (registration required): http://em.avnet.com/s6microboard
(also this lab course is based on the tutorials from AVNET)

Prerequisites

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 4

http://em.avnet.com/s6microboard
http://www.xilinx.com/tools/webpack.htm
http://em.avnet.com/s6microboard

Spartan-6 LX9 Microboard IO Devices

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 5

JTAG port
(on backside)

USB port for
console access
(USB-to-UART)

USB port for direct
programming
(USB-to-JTAG)

10/100
Ethernet

User
LEDs

User
LEDs

DONEL
ED

USB link
LED

Power
LED

User DIP
switches

PMOD expansions
headers (2x)

User reset
switch

PROG
switch

• FPGA

– Xilinx Spartan-6 XC6SLX9-2CSG324C

• Memory

– Micron 32 Mb x 16 (512 Mb) LPDDR Mobile SDRAM

– 128 Mb Micron Multi-I/O SPI Flash

• Communication

– FS USB-to-UART bridge (Silicon Labs CP2102)

– FS USB-to- JTAG bridge (Atmel AT90USB162)

– 10/100 Ethernet (National Semiconductor DP83848J PHY)

• Clocks

– PLL, triple output, user programmable (TI CDCE913)

Spartan-6 LX9 Microboard Components

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 6

FPGA
USB to
JTAG

(ATMEL µC)

SPI
Flash

PLL
Clock

DDR
Memory

Ethernet
PHY

LDO
Reg. USB

to
UART

Spartan-6 LX9 Microboard Block Diagram

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 7

Type B Micro USB

JTAG Port

Scope of the tutorial

1.1 Generating the hardware platform

1.2 Understanding what has been created

1.3 Using the SDK to compile a software application

1.4 Testing the system on the FPGA

Tutorial 1: Creating an Embedded System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 8

Hardware Platform

Use the Base System Builder to create all project files needed for an embedded
microcontroller (MicroBlaze) based system.

1. To start the Xilinx ISE Project Navigator, type ise and create a new project: File > New
Project…

2. Set the Project Location to ~/EDK and the Project Name to EDK_Tutorial. Click Next.

1.1 Creating the Hardware Platform

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 9

~/EDK/EDK_Tutorial

~/EDK/EDK_Tutorial

3. Select Spartan6, XC6SLX9, CSG324, -2. Select Verilog as the Preferred Language. Click
Next.

4. Click Finish

1.1 Creating the Hardware Platform

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 10

5. Go to Project > New Source… then select Embedded Processor. Type mb_system for
the File name. Click Next. Click Finish.

1.1 Creating the Hardware Platform

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 11

~/EDK/EDK_Tutorial

6. A message will appear asking if you want to create a Base System using the BSB wizard,
click Yes.

7. Select the AXI system then click OK.

8. In the Welcome window click
Next to create a new design.

9. In the Board and System Selection
Window select
Avnet Spartan-6 LX9 MicroBoard.
Configure the options as shown.
Click Next.

1.1 Creating the Hardware Platform

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 12

11. In the Processor, Cache and Peripheral Configuration window configure the following
options

– 100 MHz Processor Frequency

– 16KB Local Memory.

– 2KB Instruction Cache Memory

– 2KB Data Cache Memory

– Remove CDCE913_I2C core

– Remove DIP_Switch_4Bits core

– Remove Ethernet_MAC core

– Click Finish.

1.1 Creating the Hardware Platform

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 13

Use the Xilinx Platform Studio IDE to generate the embedded hardware platform.

1.2 Understanding the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 14

System Assembly View
shows each peripheral used and
the connections between the
peripherals when the Bus
Interfaces tab is selected.

Project window provides
information on the project
options used, gives access to the
main project files, and log files
• MHS File, microprocessor

hardware specifcation
• UCF File, user constraints file

Address tab shows
the address map
for the system

Bus Interfaces tab
shows peripheral
connections to the
processor

Ports tab lists
internal and external
connections

• Select Project  Generate Block Diagram Image to view the block diagram for the
project. The block diagram shows the connections between the different busses and
components in the system. A jpeg image of the block diagram gets saved in your project
in a folder named blockdiagram

• A datasheet of the system can also be generated. Go to Project  Generate and View
Design Report to view the design report. This is an html file that is generated in a report
subfolder.

• To view the general project options go to Project > Project Options… Click Cancel to
close the window.

• Close XPS when finished.

1.2 Understanding the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 15

1. Return to Project Navigator and Go to Project  Add Copy of Source to add the FPGA
constraints to the project.

2. Select mb_system.ucf in the mb_system\data directory. Click OK.

3. Select mb_system in the hierarchy window.

4. Double-click on Generate Top HDL Source in the Processes window. This creates a HDL
instantiation template for your MicroBlaze processor subsystem and instantiates into a
new created Verilog module.

1.2 Understanding the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 16

Xilinx SDK is an Eclipse based software development environment to create and debug
software applications. Features include project management, multiple build configurations,
C/C++ code editor, error navigation, a debugging and profiling environment, and source
code version control.

1. Select mb_system_i in the Hierarchy window. Double-click on Export Hardware To SDK
with Bitstream in the Processes window. This may take several minutes to complete.

1.3 Compiling a Test Application Using SDK

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 17

2. Create a Workspace named WorkSpace in the EDK_Tutorial directory. Click OK.

3. You can close the Welcome window on the right side of the screen.

4. Go to File > New > Xilinx C Project to create a new C project.

5. Select Peripheral Tests application from the project templates then click Next.

1.3 Compiling a Test Application Using SDK

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 18

~/EDK/EDK_Tutorial/WorkSpace

6. Change the Board Support Package project name to Standalone_BSP.

7. Click Finish. The application will start building and create an ELF file, which is the
compiled application.

1.3 Compiling a Test Application Using SDK

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 19

8. The Project Explorer View in SDK contains 3
projects: the hardware platform, the Board
Support Package, and the C application

9. The Board Support Package lists all the libraries
and include files associated with the hardware
project. The microblaze_0\include folder contains
all the header files applicable for the current
project.

10. The peripheral_tests_0 project contains C source
files to test each peripheral. Expand the project
src folder to view the sources. The project is
compiled automatically after being created.

11. Double click on the testperiph.c file to view the
main application.

12. To view the project properties right click on the
peripheral_tests_0 project and select Properties.
Expand C/C++ Build and select Settings to view all
the build options. Click Cancel to exit.

1.3 Compiling a Test Application Using SDK

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 20

Hardware
Platform

C Application

Board Support
Package

13. The system contains internal BRAM memory as well as external DDR memory. We can
select where the code will be physically located through a linker script.

14. Use the drop-down list to select the internal BRAM memory,
microblaze_0_i_bram_ctrl_microblaze_0_d_bram_ctrl, for all the code sections. Click
Generate then Yes.

1.3 Compiling a Test Application Using SDK

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 21

~/EDK/EDK_Tutorial/WorkSpace/

1. The LX9 MicroBoard uses two different USB interfaces for connecting to a PC for
debugging and programming the device. Connect both USB cables:

– USB-to-UART bridge for debug output (virtual COM port). The COM port was
specified when installing the drivers for the Silicon Labs USB-to-UART Bridge
(Windows: check Device Manager for COM port number, Linux: set correct TTY)

– USB-to-JTAG bridge for programming the board (*.bit, *.elf file download, Flash
programming)

1.4 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 22

Mini USB
connection for
virtual COM port

USB connection for
JTAG programming

At first, the hardware configuration is downloaded, and the processor reset to a state which
allows the download of an application (bootloop).

2. In SDK, click on the Program FPGA icon

– For the Bitstream, browse to the EDK_Tutorial directory and select
mb_system_top.bit

– For the BMM File, browse to the EDK_Tutorial directory and select
edkBmmFile_bd.bmm

– Select bootloop as ELF file to set processor to a state to accept the download of an
application (see next step)

– Click on Program

1.4 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 23

MicroBlaze
hardware
configuration

Block RAM
memory map

Software to loaded
to the BRAM

Now the file peripheral_test_0.elf is selected to download and launch the application.

3. In the SDK Project Explorer View, right-click on the peripheral_tests_0 project and
select Run As -> Run Configurations.

4. Select Xilinx C/C++ ELF and click on the New Launch Configuration icon.

1.4 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 24

The Run Configuration contains settings to run the application on the target board. We will
change the settings to disable STDIO inputs and outputs on the SDK console (stability
issues). Instead we will be using cutecom as a terminal application.

5. In the SDK Run Configurations window,
select the STDIO Connection tab.

6. Uncheck the Connect STDIO to
Console box.

7. Start cutecom with settings

– Device: /dev/ttyUSB0

– BAUD rate: 9600

– Data bits: 8

– Stop bits: 1

– no handshake

8. Click Run in the SDK window.

1.4 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 25

9. Verify that the different peripheral print statements appear on the Console output
window and that all tests pass. Alternatively one could use any another terminal
program to connect to the COM port.

10. Close the SDK. This is the end of tutorial 1.

1.4 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 26

Scope of the tutorial

2.1 Adding a new peripheral ( DIP switches)

2.2 Writing code for the peripheral

2.3 Testing the system

Tutorial 2: Adding EDK IP

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 27

Hardware Platform

We will use Xilinx Platform Studio (XPS) to add and connect a new peripheral to the existing
system.

1. Start Project Navigator and open the EDK_Tutorial project from the first tutorial. If this
tutorial is your starting point, you can start with the project found in
EDK132_Lab1_Solution

2. Double-click on the mb_system.xmp module to open the system in XPS.

3. Select the IP Catalog tab in the project window. The IP catalog lists all the processor
peripherals available with extended information. Expand the General Purpose IO
option. The peripherals can be sorted by column field. Right click on the peripheral to
view its datasheet or change log information.

2.1 Adding a New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 28

4. Select axi_gpio version 1.01.a on the list then drag and drop it to the System Assembly
View window.

5. The peripheral configuration window will open to configure the peripheral. Select
Channel 1 and change the GPIO Data Channel Width from 32 to 4. Change Channel 1 is
Input Only from 0 to 1.

6. Click OK.

7. When IP is added, a pop-up window will appear asking to automatically connect your
new IP to the MicroBlaze core. Click OK.

2.1 Adding a New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 29

8. Click on axi_gpio_0 in the Name column of the System Assembly window. Rename the
instance to DIP_Switches.

9. Click on the Addresses tab. The addresses view shows the address space for all the
peripherals. The Lock box prevents the address for that peripheral from being changed
when generating new addresses.

2.1 Adding a New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 30

Change generated
address parameters
if necessary

Alternatively: re-generate
non-overlapping addresses
for all peripherals

10. Click on the Ports tab. The Ports view shows the internal connections between the
peripherals as well as the external ports connections

11. Expand DIP_Switches from the list. It will show the connections available for the
peripheral.

12. Expand the (IO_IF) gpio_0 selection. Look at the GPIO datasheet for a description of
each port. The datasheet can be found by right-clicking on DIP_Switches.

13. Select GPIO_IO_I since the DIP switches are only inputs. Click on No Connection drop-
down list in the Net column. Select Make External to add it the external ports list.

14. Select GPIO_IO net and set to No Connection as we are only using this port as an input.

2.1 Adding a New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 31

15. Expand the External Ports to view the new connection. The name of the new external
port is DIP_Switches_GPIO_IO_I_pin with a range of [3:0].

We need to update the design information for SDK. In Tutorial 1, we exported our design to
SDK from XPS, but since we are managing this embedded project from within Project
Navigator, it will create the XML file and export the design to SDK.

16. Close XPS.

2.1 Adding a New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 32

Since we’ve added a new port to MicroBlaze, it needs to be added to the HDL source.
Additionally, we’ll need to update the constraint file to add the pinout information for the
DIP switches.

17. In Project Navigator, Open the top-level HDL file, mb_system_top, by double-clicking it.
That will open the HDL source in editor.

18. Since the port goes externally to the FPGA it needs
to be added to the entity/module declaration, add
the following line as shown (add the highlighted, bold lines):

19. The same line needs to be added to the
component/signal declaration of the mb_system.
Add the following line as shown:

2.1 Adding a New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 33

20. Finally, the instantiation of the mb_system needs to be
updated as well. Add the following line as shown:

21. Save and close mb_system_top.

22. Select the mb_system.ucf file, expand User Constraints in the Processes window and double-
click on Edit Constraints (Text). In the UCF file add the lines:
NET DIP_Switches_GPIO_IO_I_pin[0] LOC = "B3" | IOSTANDARD = "LVCMOS33" | PULLDOWN;

NET DIP_Switches_GPIO_IO_I_pin[1] LOC = "A3" | IOSTANDARD = "LVCMOS33" | PULLDOWN;

NET DIP_Switches_GPIO_IO_I_pin[2] LOC = "B4" | IOSTANDARD = "LVCMOS33" | PULLDOWN;

NET DIP_Switches_GPIO_IO_I_pin[3] LOC = "A4" | IOSTANDARD = "LVCMOS33" | PULLDOWN;

23. Save and close the UCF file.

24. Expand the mb_system_top module in the Hierarchy window. Then select the embedded
processor, mb_system_i – mb_system(mb_system.xmp).

25. Double-Click on Export Hardware Design to SDK with Bitstream to update the bit file with the
new peripheral. This will take several minutes.

2.1 Adding a New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 34

To test the new peripheral we will create a new software application in Platform Studio SDK
and use the GPIO device drivers.

1. When SDK opens select the Workspace from EDK_Tutorial.

2. The peripheral datasheets and address map can be found under the hardware platform.
Expand the mb_system_hw_platform project and double-click on the system.xml file.

3. Open the axi_gpio datasheet to view the GPIO register map. The GPIO_Data Register is
located at the base address of the peripheral, which is 0x40020000 for the DIP Switches.
NOTE: You can open the datasheet by clicking on the hyperlink for the axi_gpio
peripheral, however if no hyperlink is available, you can open the open the datasheet by
expanding Standalone_BSP, then expanding BSP_Documentation and double-clicking on
gpio_v3_00_a.

2.2 Writing Code for the New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 35

4. Go to File > New > Xilinx C Project.

5. Name the project Tutorial_Test and select Empty Application from the project templates.
Click Next.

6. Select Target an Existing Board Support Package then click Finish.

2.2 Writing Code for the New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 36

7. We need to add a source file for the new empty C project. Select the Tutorial_Test\src
folder and go to File > New > Source File. Enter main.c for the file name. Click Finish.

8. Inside main.c, after the comments, add:

#include "xparameters.h"

#include "stdio.h"

#include "xbasic_types.h"

//==================================

int main (void) {

 print("-- Entering main() --\r\n");

return 0;

}

9. Save the main.c file. The application will be compiled when saved. The Project menu
gives options to change the behavior for building the application.

2.2 Writing Code for the New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 37

10. Create a Linker Script for the new application. Right-click on the Tutorial_Test project
and select Generate Linker Script. Select
microbalze_0_i_bram_ctlr_microblaze_0_d_bram_ctlr for all the code sections to place
them in the internal BRAMs. Click on Generate. Click Yes to overwrite the existing linker
script.

2.2 Writing Code for the New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 38

We will add code after the print statement to turn-on the LEDs when the DIP switches are
asserted.

11. On the left side expand the Standalone_BSP project. The BSP Documentation section
contains the documentation for the device drivers. The microblaze_0 folder contains the
header files, compiled libraries, and sources for the Board Support Package.

12. Expand microblaze_0 then expand the include directory. Double click on the
xparameters.h file to view the hardware parameters for the system. Using the macros
will isolate the software from the actual hardware.

13. Inside the expanded include directory for microblaze_0 are all the driver header files for
the different peripherals. The _l.h denotes a low level driver. Double-click on xgpio_l.h to
view the GPIO low level functions.

14. Click on XGpio_ReadReg in the Outline window to view the format to read the GPIO
registers. We will also use the function XGpio_WriteReg to write to the LEDs. The Base
Address for the device can be found in the xparameters.h file. The Data Register has an
offset of 0x00.

2.2 Writing Code for the New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 39

2.2 Writing Code for the New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 40

Standalone_BSP
Board support package
documentation

microblaze_0
header files, compiled
libraries, BSP sources

microblaze_0 -> include
• xparameters.h: macros for

HW / SW isolation
• xgpio_l.h: low level

functions (driver files *_l.h)

peripheral_test_0
code from tutorial 1

Tutorial_Test
code from this tutorial

15. Add code to main.c to read DIP switches and write the settings to the LED output

16. Save and close the file. The application will be compiled automatically.

17. To view the changes made to main.c, right-click on main.c in the Project Explorer
window and select Compare > With Local History… Click OK when finished.

2.2 Writing Code for the New Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 41

include GPIO low
level driver xgpio_l.h

declare global
variable DIP_Read

add code to read
DIP switches and
set LED accordingly

At first, the hardware configuration is downloaded, and the processor is reset to a state
which allows the download of an application (bootloop).

1. In SDK, click on the Program FPGA icon

• For the Bitstream, browse to the EDK_Tutorial directory and select
mb_system_top.bit

• For the BMM File, browse to the EDK_Tutorial directory and select
edkBmmFile_bd.bmm

• Select bootloop as ELF file to set processor to a state to accept the download of an
application (see next step)

• Click on Program

2.3 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 42

MicroBlaze
hardware
configuration

Block RAM
memory map

software to loaded
to the BRAM

2. In the SDK Project Explorer View, right-click on the Tutorial_Test project and select Run
As > Run Configurations…

3. Select Xilinx C/C++ ELF and click on the New Launch Configuration icon

4. In the SDK Run Configurations window, select the STDIO Connection tab.

5. Uncheck Connect STDIO to Console. Start cutecom to open a terminal (see p. 25)

6. Click Run in SDK. Ensure that "-- Entering main() --" is displayed on the terminal.

7. Carefully modify the DIP switches positions to turn the LEDs on and off.

2.3 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 43

DIP
switches

8. When finished Stop/Terminate the application by pressing the red Stop/Terminate
button in the Console window

9. Close SDK. This is the end of Tutorial 2.

2.3 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 44

Click to stop
application

Scope of the tutorial

3.1 Creating a custom core (CIP wizard)

3.2 Customizing the peripheral

3.3 Adding the IP

3.4 Writing code

3.5 Testing the system

Tutorial 3: Adding Custom IP

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 45

Hardware Platform

We will use the Create/Import Peripheral (CIP) wizard in XPS to create a new custom IP for
the existing system. The custom IP will consist of a Pulse Width Modulator (PWM) controlled
using a software mapped register.
If this tutorial is your starting point, you can use the EDK132_Lab2_Solution to start with

1. Start ISE Project Navigator and open the EDK_Tutorial project.

2. Double-click on the mb_system.xmp module to open the system in XPS.

3. Go to Hardware > Create or Import Peripheral… Click on Next.

4. Make sure that Create templates for a new peripheral is selected then click Next.

3.1 Creating a Custom IP

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 46

5. Select To an XPS project.
Click on Next.

6. Enter the name for the new
peripheral, axi_pwm, and then click
Next.

3.1 Creating a Custom IP

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 47

7. Select AXI4-Lite: Simpler, non-burst
control register style interface. Click
Next.

The IPIF is a module isolating the user
interface from the bus. In addition to
facilitating bus attachment, the IPIF
provides additional optional services. The
services include software registers, user
address ranges, FIFOs, software reset,
interrupt support and bus-master access.
You can click on the More Info button, then
select AXI Bus Interface > IPIF Features for
AXI to see a description of each feature.

8. We will be using software registers to
control the peripheral. Select User logic
software register. We’ll choose how
many registers in the next screen.
Unselect all other choices. Click Next.

3.1 Creating a Custom IP

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 48

9. We will use one 32-bit wide register to communicate with the PWM hardware. Though
only twelve bits will be used to select the pulse duty cycle. Select 1 for the number of
registers. Click on Next.

3.1 Creating a Custom IP

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 49

10. The IP Interconnect (IPIC) uses a set of signals between the user logic and the AXI bus.
We will use the default signals already selected. Click on Next.

3.1 Creating a Custom IP

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 50

11. Bus Functional Models can be generated to accelerate the IP verification. This tutorial
does not cover the BFM simulation of the peripheral. Click on Next.

12. The wizard can also generate custom drivers for the peripheral and an ISE project. We
will be using XPS and writing our own code to test the peripheral. This is also where
you can select a Verilog template versus the default, VHDL. Leave it as VHDL for this
tutorial. Click on Next.

13. Click on Finish to create
the peripheral.

3.1 Creating a Custom IP

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 51

The new peripheral has been created in /mb_system/pcores/axi_pwm_V1_00_a. In the
folder /hdl/vhdl two files have been generated:

• axi_pwm.vhdl

• user_logic.vhdl

Both files will be edited now to implement the PWM functionality. The top level entity
axi_pwm.vhdl instantiates the user logic (USER_LOGIC) and the proxy to the AXI interface
(AXI_LITE_IPIF) which has been created according to the CIP wizard dialog.

1. Within ISE open /mb_system/pcores/axi_pwm_V1_00_a/hdl/vhdl/axi_pwm.vhdl and
add the code lines as described on the next slide. Alternatively you can browse to
EDK132_Lab3_Solution and copy the VHDL file to the appropriate path in your
EDK_Tutorial tree.

3.2 Customizing the New Custom Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 52

2. Add the external port to the ports declaration of axi_pwm.vhdl:
-- ADD USER PORTS BELOW THIS LINE ------------------

PWM_Out : out std_logic;

-- ADD USER PORTS ABOVE THIS LINE ------------------

3. Add the port to the USER_LOGIC_I component instantiation
-- MAP USER PORTS BELOW THIS LINE ------------------

PWM_Out => PWM_Out,

-- MAP USER PORTS ABOVE THIS LINE ------------------

4. Save and close the file

5. Open the user_logic.vhdl file and implement the PWM output which will be controlled by
the software register.

6. Add the ports declaration
-- ADD USER PORTS BELOW THIS LINE ------------------

PWM_Out : out std_logic;

-- ADD USER PORTS ABOVE THIS LINE ------------------

7. Add user signals declaration
-- USER signal declarations added here, as needed for user logic

signal duty_cycle : std_logic_vector (11 downto 0);

signal fcount : std_logic_vector (11 downto 0);

3.2 Customizing the New Custom Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 53

8. Add the user HDL code after the begin statement. The user_logic template already
contains code to read and write the register.

-- USER logic implementation added here

-- Duty cycle is controlled by the software controlled register

duty_cycle <= slv_reg0(11 downto 0);

-- 12-bit rollover counter

counter : process (Bus2IP_Clk)

begin

if (Bus2IP_Clk'event and Bus2IP_Clk = '1') then

if Bus2IP_Resetn = '0' then

 fcount <= (others => '0');

else fcount <= fcount + 1;

end if;

end if;

end process counter;

-- Enable the output for the duty cycle selected

PWM_Out <= '1' when (fcount < duty_cycle) else '0';

9. Save and close the file

3.2 Customizing the New Custom Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 54

The new external port needs to be added to the definition file for the peripheral in order to
be used in XPS.

10. Open the axi_pwm_v1_00_a\data directory and open the file axi_pwm_v2_1_0.mpd.

11. Add the PWM_Out port
 ## Ports

 PORT PWM_Out = "", DIR = O

12. Save and close the file.

13. In XPS, rescan the user IP directories. Project > Rescan User Repositories.

14. The new core will now be available.

3.2 Customizing the New Custom Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 55

We will add and connect the new custom IP to the existing system following the same
instructions as in the previous lab. We will remove the GPIO peripheral for the LEDs and
connect the PWM peripheral to the LEDs.

1. In XPS, click on the IP Catalog tab in the Project Information Area.

2. Expand the Project Local Pcores/USER list to view the custom IP.

3.3 Adding the Custom IP to the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 56

3. Select AXI_PWM then drag and drop it to the System Assembly View window. Click OK.

4. Click OK to connect this IP to MicroBlaze

5. Click on the Addresses tab to view the address range for the new IP

3.3 Adding the Custom IP to the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 57

6. Delete the GPIO peripheral instance for the LEDs.
In the System Assemble View, right-click on the
LEDS_4Bit instance and select Delete Instance.
In the pop-up select Delete instance but do not
remove the nets. Click OK.

7. Click on the Ports tab. Expand axi_pwm_0 from
the list. It will show the connections available for
the peripheral.

3.3 Adding the Custom IP to the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 58

That is very important! If
you delete the nets you
cannot connect your new
peripheral block.

8. For PWM_Out click on the Net column and
select New Connection from the drop-down
list. The new net name will be
axi_pwm_0_PWM_Out. If it does not
appear, select it from the pull down.

9. Expand the External Ports connections. For the LEDs_4Bits_TRI_O, replace the current
Net entry with axi_pwm_0_PWM_Out & axi_pwm_0_PWM_Out & axi_pwm_0_PWM_Out &

axi_pwm_0_PWM_Out. This concatenation will drive all 4 LED’s with the same brightness.

10. Close XPS.

3.3 Adding the Custom IP to the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 59

11. In Project Navigator, expand the mb_system_top module in the Hierarchy window. Then
select the embedded processor, mb_system_i – mb_system(mb_system.xmp).

12. Double-Click on Export Hardware Design to SDK with Bitstream to update the bit file
with the new peripheral. This may take several minutes.

3.3 Adding the Custom IP to the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 60

To test the new peripheral we will add code to the Tutorial_Test project created with
Platform Studio SDK. We will make use of the DIP switches to control the pulse duty cycle.
The 4 DIP switches will be used to select the 4 most significant bits of the duty cycle. We will
lose some precision but still be able to test the peripheral.

1. Start Xilinx SDK and select the Workspace from EDK_Tutorial.
NOTE: The applications will not compile since we removed the GPIO peripheral which
was used for the LEDs. The duty cycle is controlled with a software register. From the
address map defined in the user_logic code, the register is located at BaseAddress + 0x0.

2. Expand the Standalone_BSP project then microblaze_0
in the Project Explorer window. Expand the include
directory. Double click on the xparameters.h file to view
the driver parameters for the custom peripheral:

3. Scroll down to view the address for custom peripheral.

 /* Definitions for peripheral AXI_PWM_0 */

 #define XPAR_AXI_PWM_0_BASEADDR 0x7EE00000

 #define XPAR_AXI_PWM_0_HIGHADDR 0x7EE0FFFF

3.4 Writing Code for the Custom Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 61

4. Double click on the main.c file in the Tutorial_Test project. We will modify the code to
use the custom peripheral instead of the GPIO.

5. Save and close the file. Verify that the code compiled without errors.

6. The system is ready to be downloaded to the board.

3.4 Writing Code for the Custom Peripheral

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 62

Add new global pointer
u32 *Duty_Cycle

Define base address for the
register (see xparameters.h)

Replace the GPIO write with
code to shift the DIP switch
reading to the MSB of 12-bit
duty cycle register.

At first, the hardware configuration is downloaded, and the processor is reset to a state
which allows the download of an application (bootloop).

1. In SDK, click on the Program FPGA icon

• For the Bitstream, browse to the EDK_Tutorial directory and select
mb_system_top.bit

• For the BMM File, browse to the EDK_Tutorial directory and select
edkBmmFile_bd.bmm

• Select bootloop as ELF file to set processor to a state to accept the download of an
application (see next step)

• Click on Program

3.5 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 63

MicroBlaze
hardware
configuration

Block RAM
memory map

software to loaded
to the BRAM

2. In the SDK Project Explorer View, right-click on the Tutorial_Test project and select Run
As > Run Configurations…

3. Select Xilinx C/C++ ELF and click on the New Launch Configuration icon

4. In the SDK Run Configurations window, select the STDIO Connection tab.

5. Uncheck Connect STDIO to Console. Start cutecom to open a terminal (see p. 25)

6. Click Run in SDK. Ensure that "-- Entering main() --" is displayed on the terminal.

7. Carefully modify the DIP switches positions to turn the LEDs on and off.

3.5 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 64

DIP switches

8. When finished Stop/Terminate the application by pressing the red Stop/Terminate
button in the Console window

9. Close SDK. This is the end of Tutorial 3.

3.5 Testing the Generated System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 65

Click to stop
application

Scope of the tutorial

3.1 Setting up the simulation environment

3.2 Adding a testbench file

3.3 Using Isim to simulate the system

Tutorial 4: Embedded System Simulation

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 66

Hardware Platform

Very little setup is required to simulate an embedded design from ISE. We just need to verify
that ISim is selected as the main hardware simulator and add the Tutorial_Test ELF file
created in SDK.
NOTE: If this tutorial is your starting point, you can use the EDK132_Lab03_Solution to start
from.

1. Start ISE Project Navigator and open the EDK_Tutorial project.

2. Go to Project > Design Properties and verify that ISim is selected for simulation. Click
OK. Choose Verilog as Preferred Language (VHDL would work as well).

4.1 Setting up the Simulation Environment

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 67

3. Go to Project > Add Source. Browse to the
\EDK_Tutorial\WorkSpace\Tutorial_Test\Debug\
directory and open Tutorial_Test.elf.

4. Set the associations to All and click OK.

5. Check the box Use With box to associate
the ELF file to the MicroBlaze processor
for simulation and implementation. Click OK.

4.1 Setting up the Simulation Environment

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 68

To simulate our design we will need to add a HDL test bench. The testbench will instantiate
our top level module and provide stimulis for the input ports.

1. In Project Navigator, go to Project > New Source.

2. Select Verilog Test Fixture (or VHDL Test Bench), select Testbench for the file name. Click
Next.

3. Select mb_system_top and click Next. Click Finish.

4. Click on the Simulation View radio button. The type of simulation can be changed by
using the drop-down list. We will do a Behavioral simulation.

4.2 Adding a Test Bench File

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 69

5. The test bench should be open in the Editor. If not, double-click on Testbench.

6. Add stimulus for the reset, and DIP switches. Reset_in is active high on the MicroBoard.

7. Save the test bench file.

4.2 Adding a Test Bench File

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 70

Add clock
stimulus

Start with active
high RESET (change
from active low)

Wait for another
100ns for RESET
to finish

Change duty
cycle after some
delay

Set DIP switch
settings (PWM
duty Cycle)

8. Click on Testbench – behavior (Testbench.v) in the Hierarchy Window. Then in the
Processes expand ISim Simulator and double-click Behavioral Check Syntax. This will
check to see if you have any errors in your testbench.

4.2 Adding a Test Bench File

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 71

The simulation can take advantage of code running from BRAMs, providing a cycle accurate
MicroBlaze simulation. We will be able to see and trace MicroBlaze execution. ISim will use
the software application selected to initialize in BRAMs in XPS.

We will select the Tutorial_Test (ELF) application from the last tutorial (or the
EDK132_Lab3_Solution in case you start from here).

At first we need to modify the application in SDK since writing to the UART would take too
long in a simulation environment. We will need to comment out the print statement.
Additionally, we need to make sure the application Tutorial_Test is checked to initialize the
BRAMs (should have been done on p.68 already).

1. Start SDK and select the Workspace from EDK_Tutorial.

2. Open the Tutorial_Test main.c source file and comment out the print statement by
adding // at the beginning of the line.

3. Save the main.c file. This will automatically compile the new ELF file.

4. Minimize SDK. Do not close it.

4.3 Simulating the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 72

5. In Project Navigator, select Testbench in the hierarchy view.

6. In the Processes window, double-click on Simulate Behavioral Model. The tools will load
and compile all the necessary files.

7. Wait for ISim to open. This could take several minutes as it is running Simgen.

4.3 Simulating the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 73

8. We will add some internal signals to the waveform. Select the Instances and Processes
window on the left side.

9. Expand testbench, then UUT, then mb_system_i to view the embedded system
components. (see below.)

10. Select axi_pwm_0, then immediately below, expand the axi_pwm_0 and scroll down to
view the USER_LOGIC_I signals. From the Objects window, drag pwm_out, fcount[11:0]
and duty_cycle[11:0] to the waveform window.

4.3 Simulating the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 74

11. Select microblaze_0 to view all the MicroBlaze objects. There are a lot valuable signals
which can be observed during simulation. An example would be the program counter. In
the Object window, scroll-down to the trace_pc[0:31] signal. Select the signal and drag it
over to the Waveform Window.

12. To simplify the simulation waveform window, you can delete any of the mcbx and
SPI_FLASH signals since we are not utilizing the LPDDR or FLASH in this tutorial. You can
also rearrange the signals and change radix as show below.

13. Restart the simulation, click .

4.3 Simulating the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 75

14. Run the simulation for 140 us. In the console window, type: run 140us. Or type 140us
into the window as shown below and click Run for Specified Time,. This may take a few
minutes to load.

15. Look at the cycles on the AXI bus and observe the pwm_out signal. You can see it goes
valid twice during this period. In the simulation testbench, we’ve set to duty cycle widths
and they are shown here. For the first and second PWM cycles, the duty cycle is set to
2048, and pwm_out is valid until fcount exceeds that value. In the third and forth PWM
pulses, the duty cycle is set to 256.

16. You can also correlate the program counter (trace_pc) to the C application.

17. In SDK, expand the Tutorial_Test/Debug project. Double-click on the Tutorial_Test.elf
executable file.

4.3 Simulating the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 76

18. Scroll down to view the disassembly of the C code.

4.3 Simulating the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 77

19. In the ISim simulation window, look at the trace_pc bus (change the radius to HEX). The
PC goes between 0x1C8 and 0x1E4 which are the instructions contained in the while
loop.

20. There are many more MicroBlaze signals which can be observed.

21. Close ISim when finished. Close SDK.

22. In Project Navigator, switch back to the Implementation view by clicking the
Implementation radio button.

That concludes this tutorial.

4.3 Simulating the System

Embedded System Design Lab Course, H. Krüger, Bonn University, 2012 78

