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Introduction 

• LHC, performing superbly. 

• 2011: higher than expected luminosity 

• 2011 a great LHC year… 

     and more to come for 2012! 

 

 

 

 

CMS 
ATLAS 
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Current inner detectors at LHC 
CMS pixels ATLAS pixels 
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Needs for pixel upgrade for HL? 

• High Luminosity LHC challenges for inner layers: 

 

– Higher hit rate. 

– Higher radiation levels. 

 

… while needing 

 

– High resolution. 

– Low material. 

 

  leads to high performance for physics! 

L. Gonella’s talk 
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ATLAS FE-I4 in 130nm CMOS 

• Focus of ATLAS pixel FE designers’ activity since ~2008. 

• Features: 

– Smaller pixel 50×250μm2 (resolution up + reduced X-section), 
big array -20×17mm2 active- (simpler module, less material). 

– Low power (analog / digital array), low noise (digital / analog 
separation, T3 deep nwell), high radiation tolerance (130nm). 

– New pixel digital organization: buffers in 4-pixel region (only 
triggered hits are transferred to EoDC)   efficient at high rate. 

– Data reformatting + 160Mb/s data transmission high rate 
data transmission. 

• Full size 1st proto back fall 2010, performs very well. 

• Production version for IBL back Dec. 2011.  

– Works good (but not all parts thoroughly tested yet). 



ATLAS 

pixel chip 

FE-I3 (5cm) 

rate or L 

HL-LHC data rates & next ATLAS FE 

Hit inefficiency rises steeply with 
the hit rate  
 
Bottleneck: congestion in double 
column readout 
 

more local in-pixel storage (130nm!) 
    >99% of hits are not triggered 
     don’t move them -> not blocking 
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pixel array: 
336×80 pixels 

periphery 

digital 4-pix 
(PDR) 

analog 1-pix 
(FEND) 

4-pixel region 

EODCL 

DDC & DC 

Power 

DOB 

EOCHL 

Pads 

CLKGEN 

CMD DCD 

CNFGREG 

DACs 

CREF 

IOMux+ Bypass 

• Overview 
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The Insertable B-Layer 
• Layout based on performance studies in G4 

and available space:  

➡ smaller beam pipe (Rmin = 26.5 mm)  

➡ reconstruction: 4th Pixel layer 
➡ IBL material adjusted to 1.5% X0  

➡ smaller z pitch (250 µm)  

 
Provide ATLAS with a 4 Layer Pixel 

Tracker from 2014 onwards. 

Maintain and improve physics 

performance (b-tagging vs. light jet 

rejection, vertexing) until HL-LHC. 

Provide redundancy in case of 

efficiency losses in other layers. 

Insertion of new pixel inside current 

pixel detector: Insertable B Layer IBL.  

IBL sensors at ~34mm radius: 250 Mrad 

TID and 5x1015 neq/cm2 NIEL.  

 Installation 2013! 
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Targets FE-I4: IBL & HL-LHC  

• Fast IBL (’13): inserted 
layer in current detector. 

Present beam pipe & B-Layer 

Existing B-layer 

New beam pipe 

IBL mounted on beam pipe 

FE-I4B 

- All Silicon. 
- Long Strips/ Short Strips / Pixels. 
- Pixels: 

- 2 or 3 fixed layers at ‘large’ radii 
(large area at 16 / 20 / 25 cms?) 
-2 removable layers at ‘small’ radii 

• Phase1 LHC / HL-LHC (>’17): 
4-5 pixel layers, small radii / 
large(r) radii (note: Discussion on 

boundary pixel / short strips, …). 

ATLAS Pixel 
Detector 

3 barrel layers / 3 end-caps 
end-cap: z± 49.5 / 58 / 65 cm 
barrel: r~ 5.0 / 8.8 / 12.2 cm 

FE-I4C 

NewPix 
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Inner pixel layer at HL-LHC 
• Inefficient if FE-I4 like. 

• Need higher rate capability. 

• Need smaller, faster pixel. 

• Need more memory per pixel to handle high rate. 

• Need new FE with smaller pixel size and more space for 
digital pixel  smaller feature size (e.g. 65nm) or 3D. 

feature size down 3D stack 
125 μm? 125 μm 

still 130nm? (at least analog) 65 nm 

Benefits: 
- natural fn split. 
- good analog. 
- tech mix. 

Benefits: 
- maturity. 
- mainstream. 

IBL & outer pixel 
layers HL-LHC 5

0
 μ

m
 

250 μm 

FE-I4, 130nm 

And make more cleaver pixels! 
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65nm CMOS effort 
• Approx. factor 4 area reduction for digital circuits wrt 130nm. 

• Conventional wisdom says not much gain for analog circuit (as 
needs employ more complex archi., move away from minimal). 

– Still transistor performance is not all the picture (capacitors, 
switches, interconnects do scale!) 

– Strategy then to reduce analog complexity, and do more on digital 
signal processing. 

• Prototyping for HL-LHC has started: Array, prototype blocks –
low power comparator, RAM, PLL (synergy with Depfet DHP 
digital IC design)-. 
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1st prototypes in 65nm  

Analog FE array proto 
A. Mekkaoui, LBNL 

1.6 GHz PLL-PRBS-CML 
T. Kishishita, Bonn 

1.6 Gbps, PRBS, preamp on 

4
0

0
m

V
 

CSA + Comparator 
M. Havranek, Bonn 

unloaded-ENC ~ 80e- 
RMS jitter ~ 60ps  

dyn. comp.: 2.4μW @40MHz 
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3D electronics: FE-TC4 

• Collaboration Bonn (Germany), CPPM (France), LBNL (USA). 

• Goal: a 50×125 μm2 3D chip, with split analog and digital 
functionalities. 

• Technology: 

– 130nm (restricted to 5 metals for now). 

– 3D process. 

 

• Prototypes submitted in 2D, as technology test bench. 

– Good performance, good radiation tolerance. 

• 3D analog + digital stack submitted. 1st prototypes back last 
year. 

Opto Electronics

and/or Voltage Regulation

Digital Layer

Analog Layer

Sensor Layer

Physicist’s Dream

50 um

Power In

Optical In Optical Out
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3D technology enablers 

Through silicon via 

Intertier bonding interface 

 

5µm 

10µm 

Via access after thinning 

Metallization 
after thinning 

Metallization 

Face to face 
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1st HEP 3D MPW  
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• FNAL led (participants from Canada, France, Germany, Italy, Poland, USA). 
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Analog Tier 

2 read-out mechanisms: 

 - Based on the analog tier shift register. 

 - Using the digital tier. 

super contact  

from the sensor 

next  
pixel 

previous  
pixel 

SR 
cell 

to the digital tier 

InterTier bonding 

Based on FE-I4 analog pixel 
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Digital Tier 
Based on FE-I4 4-pixel region 

 
• Simplified periphery: Control signals 
provided from outside  
 
 
• Simple configuration through  
  a shift register. 
 
 
 

• 2 readout modes:  
 

– simple readout using DC shift register for test purposes only. 
 no ToT, read-out whole pixel array. 
 

– regular readout similar to the full FE-I4. 
  read-out only triggered pixels, ToT information. 

4-pixel 
region 
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3D IC processing issues 

• > 30 single wafers produced , only 3 bonded wafer pair of 
poor quality accepted so far. 

Damages on the wafer & 
Close up photographs 

Bad electrical & mechanical 
connection due to 
misalignment of the tiers.   

Bad mechanical connection between tiers lead 
to top tier removal during thinning process 
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12μm thinned down analog tier 

        
Digital 
Thick 

Analog 
Thinned 

~12um 

Noise Threshold 

3D 3D 

TSV drilled thinned down analog tier (12 µm !!!) 
works with marginal noise increase.  



Marlon Barbero, Uni Bonn, 3D and NewPix, HHA Detektor WS 2012, Mar. 15th  23 

A perfect detector for HEP 

Monolithic 

Low cost 

Rad-hard 
High hit rate 

Low noise Low power 

High resolution 

Intelligent pix Large area 
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CMOS MAPS 

• standard CMOS process. 

• no PMOS in-pixel. 

• signal collection diffusion (speed). 

• small signal (typ. 1000e-). 

• small noise (typ. 20e-) 

• small pixel size. 

• not rad-hard. 

 

• STAR pixel upgrade, EUDET telescopes 

 

  Suited for high precision, low rate, low rad. 
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Depfet 

• Baseline for Belle II. 

• pixel size 50×50μm2. 

• SNR ~20/1 

• rolling shutter, 100ns pro row.  

• Thickness ~75μm. 

 

 

 

 

 

  Suited for high precision, low rate, low rad. 
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HV-MAPS Ivan Peric, Mannheim / 
Heidelberg 

HV deep N-well 

P-Well 

Depleted 

P-substrate 

Pixel i Pixel i+1 

Not depleted 

14 m @ 100V 

~1000 e 

~1000e 

AMS 350nm  180nm 
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Benefits and drawbacks 

• Monolithic, sensor + P/NMOS . 

• Fast signal collection time by drift. 

• Charge collection @ surface  thinning. 

• Low price (“standard CMOS”). 

• Tolerance to non-ionizing radiation damage 

(high drift speed, short drift path) 

• Tolerance to ionizing radiation 

– (DSM, rad tolerant designs can be used) 

BUT: 

• PMOS and collection node share same bulk. 

• Large size of collecting electrode. 

• Not fully depleted. 



Marlon Barbero, Uni Bonn, 3D and NewPix, HHA Detektor WS 2012, Mar. 15th  28 

Rad and read 

• Read by capacitive coupled pixels? 
– no bump-bond. 

– increased resolution. 

– commercial sensor techno. 

– sensor thinning. 

– bias  < 60V. 

– 100% fill factor. 

RO chip 
Analog information 
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Conclusion 
• LHC experiments now: the time of hybrid pixel technology. 

• Still technologies used have aged, and hybrid pixel can benefit 
now from smaller feature size on FE side. 

• But new technologies might be game-changer for HEP: 

– 3D integration. 

– Monolithic concepts. 

• Keep an eye on new technologies (new HV technology options 
which could solve HV-MAPS issues, use of HR wafers  3 key 
words: integration, isolation, depletion). 

 

• Not covered: 

– CMS upgrade efforts. 

– SoI developments, μ-pattern gas avalanche detector... 

R. Horisberger’s talk 
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Backup 

BACKUP 
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Hit rate 

Mean ToT = 4 
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Can be kept low by storing more hits 
locally. Bigger memory size 

FE-I3 at r=3.7 cm FE-I4 at r=3.7 cm 

At a certain luminosity  
fast rise of the inefficiency 

Scales with the pixel size (area) 

0.6% 
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B-tagging with IBL 
• Look at light-jet rejection at 60% b-

tagging efficiency at different pile-up 
conditions: 

• Rejection significantly increases with 
IBL 

• “Restores” rejection for high pile-up 
events:  

– rejection at high pileup as good or 
better at current ATLAS without 
pileup   

• Clear benefit from 4th layer 

• The 4th Layer also provides 
redundancy against efficiency losses in 
other layers 
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•Nowadays chips contain millions of transistors. 

• Smaller transistors  More transistors per unit area  More functionality  

• But smaller transistor size  new issues (smaller distance between “source” and “drain”, 

    thin gates, Smaller gate voltage, tunneling effect and leakages, higher doping profile) 
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Limitations of scaling down 
• Problems with feature size decreasing 

• New issues @ transistor level  

• Increase of interconnection density : 
• parasitic RC delays  

• parasitic inductances 

• increases heat dissipation 

• power consumption 

• noise coupling.  

• Even if the above limitations will be circumvented mixed signal designs 
could suffer from the small feature size: when for the digital part this 
would be a natural choice, “designers’ conventional wisdom”  analog 
performance could degrade due to small transistor size. 

• 3D packaging/integration could help 
• Possible solution could be to break the IC circuit into several layers, and 

stack them on top of each other: 
• More transistors per unit area without decreasing feature size. 

• Interconnect vertically. Shorter distance. 

• Different technologies for different layers. 

• Compact modules integration the sensor as well 

 

 

Wiring crisis 

e- 
Tunneling 

Leakage 

Proximity 

Decrease of the voltage 
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65nm array test results 

Chip found to work as expected! 

VDD=1.2V    

I= 5 µA per pixel (can be as low as 2 µA) 

 

Preamp out 

Single to Diff. out 

Chan 15/32 Qin: 2ke 
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65nm, threshold adjustment 
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Dynamic comparator 

• Motivation: reduce power consumption 

  - comparator in FE-I4 has static power  

    consumption of 5.6 μW 

 

• Benefits of dynamic comparator: 

  - high speed 

  - nearly zero static power consumption 

  - low voltage operation 

  - rail to rail output 

  - small chip area 

 

• Drawbacks: 

  - sensitivity to correct layout (symmetry) 

  - sensitivity to symmetric load 
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Dynamic comparator – post-
layout simulation data 

• Static power:         3.18 pW 

• Power at 40 MHz:            2.33 μW (digital buffer as a load) 

• CLK-OUT delay:          <       1 ns 

• Voltage offset:                       -1.2 mV    at Vref =   500 mV 

          -12.1 mV  at Vref =   800 mV 

          -28.2 mV  at Vref = 1000 mV 

 
•  Useful voltage range:              300 mV – 1V 

  - low limit is given by decision time < 10 ns 

  - high limit is given by |voltage offset| < 28 mV   
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3D TC stack 

• Tier 1 is thinned. 

• IO of each tier are 
independent, each tier can 
be tested stand-alone. 

• Digital tier comes in 2 
versions. 

• In the future, sensor can 
possibly be integrated tier on 
top of analog tier  when 
(/If?) processing mature, 
very flexible technology with 
each tier adapted to your 
application 

M5 

M4 

M3 

M2 

M1 

M6 

SuperContact 

M1 

M2 

M3 

M4 

M5 

  M6        

SuperContact 

Bond Interface 

T
ie

r 
2

- 
D

ig
it

a
l 

T
ie

r 
1

 -
 A

n
a

lo
g

 

(t
h

in
n

e
d

 w
a
fe

r)
 

Back Side Metal 

sensor 



Marlon Barbero, Uni Bonn, 3D and NewPix, HHA Detektor WS 2012, Mar. 15th  40 

3D technology enablers 
• Through Silicon Via formation, passivation and metallization. 

• Wafer thinning: grinding, chemical etching... 

– via has aspect ratio (depth vs. width)  wafer thinning! 

• High precision alignment tool: Die to wafer or wafer to wafer. 

• Inter-Tier Bonding. 

– face to face / face to back. 

– polymer bonding, SiO2 bond, CuSn eutectic, metal direct  DBI, Cu 
thermocompression… 

face to face bond 

face to back bond 

tier 3 (thinned) 

tier 2 (thinned) 

tier 1 (un-thinned) 

TSV 

Cu-Cu bond 
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M5 
M4 
M3 
M2 

M1 

M6 

Super- 
Contact 

Bond 
Interface 

2.5µm min 

12µm 
1.2µm 

 

5µm 

10µm 

Each wafer has special 

interface – “bond interface” - 

for electrical and mechanical 

inter-tier connection. 

Wafers are placed one on top of 

another and aligned to match 

Bond interfaces of both tiers. 

After bonding top wafer is  thinned to 12 

µm and diced. Thinning is needed to 

access TSVs 

3D Tezzaron foundry process 
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Analog and Digital Tier 

A SENSOR 

to the digital tier 

Inter-tier bonding 

super contact  

from the sensor 

Analog pixel chain and 
4-pixel Region  

derived from FE-I4 
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Pixel electronics - Normal 
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CCPD Operation 

Bias A 

Bias B 

Bias C 

FEI4 Pixels 

CCPD Pixels 

SelectL=1 SelectR=1 

CCPD bus 2 
CCPD bus 1 
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Strip and Test-Operation 
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Simulation results 

3 pixelCCPD Output “source = 20nA ; 30nA ; 40nA ; 50nA” 

2,5ke- 3,75ke- 5ke- 

Equivalent injection charge through 50fF capacitor 

Preampli outputs 

amp2 outputs + Threshold signal 

Hit ouputs 


