

High precision pixel sensor capacitance measurements

M. Havranek, F. Hügging, H. Krüger, N. Wermes

5th Detector Workshop of the Helmholtz Alliance "Physics at the Terascale"

15th March 2012, Bonn

Motivation

 \Box ~ 2020 - LHC luminosity upgrade: 10³⁴ cm⁻² s⁻¹ \longrightarrow 10³⁵ cm⁻² s⁻¹

Detectors need upgrade too

□ 3 sensor options for ATLAS Pixel Detector:

- silicon planar
- silicon 3D
- Which one is the best??

- diamond

□ FE-I4 read-out chip developed for ATLAS IBL

□ Challenges: keep high signal to noise ratio to preserve tracking performance after heavy irradiation

ENC and sensor capacitance

□ Equivalent Noise Charge (ENC) depends on the pixel sensor capacitance

□ Transient noise simulation of FE-I4 analogue front end:

But what is the pixel sensor capacitance???

PixCap chip

□ PixCap - pixel sensor capacitance measurement chip

- Designed to be bump-bonded on the pixel sensor
- Technology Lfoundry 150 nm CMOS process

Process parameters:

- 6 metal layers
- 1.8 V voltage domain
- low leakage switching transistors

PixCap parameters:

- dimensions 3.2 x 2.2 mm
- 320 (8×40) configurable measurement channels
- half of the chip has metallic shielding
- pixel dimensions 250 x 50 μ m (ATLAS PIXEL IBL sensors)

Principle of capacitance measurement

Tested devices

silicon planar sensor - bottom side

silicon planar sensor - top side

silicon 3D sensor

single crystal diamond sensor

test setup

PixCap without sensor

Silicon planar sensors (N on N)

Capacitance variations are probably due to sensor process variations

Silicon 3D sensor

Tested 3D sensor suffers with large leakage current => measurement at low V_{BIAS} = -5 V

3D silicon sensor:				
C _{MEAN} ~ 171.4 fF				

Diamond

□ Single crystal diamond - nearly perfect insulator => no leakage current

Capacitance is independent of sensor bias potential

Capacitance between pixels (diamond)

PixCap measurement

Simulation (Ansys Maxwell)

- Capacitance between pixels -> major contributor to the total pixel capacitance
- PixCap measurement was cross-checked by simulation
 => good agreement
- Similar measurement made with silicon sensor but results are not yet well understood

Summary

□ Pixel sensor capacitance impacts detector noise performance

□ PixCap - chip for capacitance measurement

□ Several sensor types has been measured with PixCap:

silicon planar:	<i>C</i> ~ 110 fF
silicon 3D:	<i>C</i> ~ 170 fF
diamond:	<i>C</i> ~ 20.8 fF

Back-up slides

Sensitivity to input signals

Sensitivity of capacitance to Vin voltage and switching frequency - capacitance not corrected by leakage current and parasitic capacitance of PixCap

One channel of diamond sensor

∑ <u>u</u> 1.8 34 Σ 120 Capacitance Capacitance mean = 32.78 fF § 1.1 = 117.22 fF mean = 116.78 fF mean = 114.38 fF mean = 32.81 fF mean = 32.75 fF mean = 32.73 fF mean = 116.16 fl 33.8 stdDev = 145 aF stdDev = 71 aF stdDev = 25 aF stdDev = 3.40 fF stdDev = 0.36 fF stdDev = 33 aF stdDev = 14 aF stdDev = 41 aF 119 33.6 mean = 32.78 fF mean = 116.67 fF mean = 32.78 fF mean = 32.75 fF mean = 32.73 fF mean = 117.34 fF mean = 116.18 # mean = 115.11 /F 1.6 118 1 stdDev = 174 aF stdDev = 53 aF stdDev = 46 aF stdDev = 100 aF stdDev = 2.49 fF stdDev = 0.93 fF stdDev = 59 aF stdDev = 13 aF 33.4 Ξ 117 33.2 mean = 32.83 fF mean = 32.79 fF mean = 32.78 fF mean = 32.76 fF mean = 117.08 fF mean = 116.77 fF mean # 116.13 fF mean = 115.11 fF 1.4 0.9 stdDev = 180 aF stdDev = 78 aF stdDev = 48 aF stdDev = 22 aF stdDev = 0.15 fF stdDev = 0.47 fF stdDev = 76 aF atdDev = 22 aF 33 116 mean = 32.92 fF mean = 32.91 fF mean = 32.89 fF mean = 116.94 fF mean = 114.96 fF mean = 32.90 fF mean = 116.61 fF mean = 115.99 fF 1.2 0.8 32.8 stdDev = 379 aF stdDev = 143 aF stdDev = 80 aF stdDev = 51 aF stdDev = 0.32 fF stdDev = 1.55 fF stdDev = 0.11 (# stdDev = 19 aF 115 32.6 mean = 33.39 fF mean = 33.39 fF mean = 33.35 fF mean = 33.34 fF mean = 116.46 fF mean = 115.40 fF mean = 114.18 fF mean = 117,13 fF 1 0.7 114 stdDev = 239 aF stdDev = 133 aF stdDev = 92 aF stdDev = 84 aF stdDev = 3.55 fF stdDev = 0.90 fF stdDev = 27 aF stdDev = 1.93 fF 32.4 113 32.2 mean = 34.09 fF mean = 34.04 fF mean = 24.32 fF mean = 12.35 fF 0.8 mean # 251 81 fF 0.6 stdDev = 717 aF stdDev = 193 aF stdDev = 74 aF stdDev = 44 aF abiDev = 3.73 fF attilliev = 2.15 ff stdDev x 6.13 fF 32 112 2 0.5 0.5 1 2 f [MHz] [MHz]

One channel of silicon planar sensor

not exactly known

Determination of conversion constant

I-V transfer characteristic - PCB1

 \Box I-V converters work as expected

Resistor values for each PCB were determined from transfer function (least square fit)

	Unsoldered resistors		determined from transfer function		
PCB	R _{vin} [kOhm]	R _{meas} [kOhm]	R _{vin} [kOhm]	R _{meas} [kOhm]	Note
1	100.115	100.025	100.179	100.076	Bare PixCap
2	99.778	99.605	99.743	99.532	Silicon planar
3	100.085	100.256	100.080	100.227	Diamond
4	99.905	99.920	99.941	100.066	Silicon planar
5	99.565	99.575	99.602	99.694	Silicon 3D

Measurement uncertainty

Measurement uncertainty:

$$U = \sqrt{\sum_{i} \left(\frac{\partial C}{\partial x_{i}} \Delta x_{i}\right)^{2}} , \quad C(x_{1}, x_{2}, x_{3}, ...)$$

Most of the terms are negligible. Typical values:

$$\frac{\partial C}{\partial V_{CAP}} \Delta V_{CAP} = 17 \text{ aF}$$
$$\frac{\partial C}{\partial V_{REF}} \Delta V_{REF} = 8 \text{ aF}$$
$$\frac{\partial C}{\partial f} \Delta f = 4.5 \text{ aF}$$

The largest source of uncertainty comes from current to voltage conversion constant (R) !!

Uncertainty of capacitance measurement

Taking into account all parameters for capacitance determination the uncertainty of capacitance measurement for each sensor types are following:

Bare PixCap:

$$U_{c} = 114 \text{ aF}$$

Silicon planar sensor:

$$U_{c} = 272 \text{ aF}$$

Diamond sensor:

 $U_{c} = 131 \text{ aF}$

Silicon 3D sensor:

 $U_{c} = 266 \text{ aF}$