Lessons Learned in Calorimetry at ATLAS

5th Terascale Detector Workshop

Sven Menke, MPP München

16. Mar 2012, Uni-Bonn

- ATLAS and the LHC
- Calorimetry in ATLAS
- Signal Reconstruction
 - from signals to cells
 - from cells to clusters
 - from clusters to jets

Performance

- Electrons and Photons
- Jets

Effects of PileUp

Conclusions

ATLAS and the LHC

- LHC: pp Collisions $@\sqrt{s} = 7 \text{ TeV}$ since March 2010
- 2011 ATLAS recorded integrated luminosity @ $\sqrt{s} = 7$ TeV: L = 5.25 fb⁻¹ as of 30-Oct-2011 (stop of pp-run)
- Bunch crossing distance in 2011: 50 ns
- Average number of interactions per bunch: $\langle \mu \rangle \simeq 6 12$

S. Menke, MPP München
 Lessons Learned in Calorimetry at ATLAS
 5^t

The ATLAS Detector

A Torodial LHC AparatuS: 25 m high; 44 m long; 7000 t heavy

S. Menke, MPP München
 Lessons Learned in Calorimetry at ATLAS
 5th Terascale Detector Workshop, 16. Mar 2012, Uni-Bonn 3

ATLAS Calorimetry

- Electromagnetic Calorimeter: LAr/Pb Accordion sampling calorimeter
- Lead is the absorber to produce the secondary particles
- Liquid Argon in the absorber gaps is ionized and HV electrodes collect the current

LAr electromagnetic

- Hadronic barrel calorimeter: Steel/Scintillator sampling calorimeter (Tile)
- Hadronic Endcap Calorimeter: LAr/Cu (HEC)
- Forward Calorimeter: LAr/Cu(W) (FCal)
- \blacktriangleright 190 \times 10³ readout channels
- Resolution for *e*/γ: σ_E/E ≃ 10%/√E
 For jets: σ_E/E ≃ 50%/√E ⊕ 3%

S. Menke, MPP München
 Lessons Learned in Calorimetry at ATLAS

LAr forward (FCal)

ATLAS Calorimetry > LAr EM Calorimeter

EM readout structure

- Layer1 (Front): $\simeq 2 4 X_0$ $\delta \eta \times \delta \phi = 0.025/8 \times 0.1$
- Layer2 (Middle): $\simeq 16 18 X_0$ $\delta \eta \times \delta \phi = 0.025 \times 0.025$
- Layer3 (Back): $\simeq 2 4 X_0$ $\delta \eta \times \delta \phi = 0.050 \times 0.025$

• 173312 readout channels incl. PS

EM absorber structure

- Pb-Absorbers (1.5, 1.1, 1.7, 2.2 mm) arranged radially
- Folding angle and wave height vary with r (End-cap)
- Anodes pointing in η

ATLAS Calorimetry > Hadronic Tile Calorimeter

- Tile absorber structure
 - laminate of 4 5 mm thick steel plates (absorbers and spacers) stacked to 293.2 mm thick sub-modules
 - scintillating tiles are inserted in the holes left by the spacer plates
 - high periodicity makes absorber structure independent from optical instrumentation
 - 19 (9) sub-modules make one barrel (extended barrel) module
 - 64 identical modules in ϕ

Tile readout structure

- tiles are grouped to readout cells in 3 longitudinal layers (B and C are readout together)
- $\delta\eta \times \delta\phi \simeq 0.1 \times 0.1$ (0.2 × 0.1)
- gap scintillators provide calorimetric information between TileB and TileEB and between EMB and EMEC
- 5248 readout channels

ATLAS Calorimetry > LAr Hadronic Endcap (HEC)

HEC absorber structure

- Absorbers plates parallel to beam axis
- 2.5 cm thick Cu plates in HEC 1
- 5.0 cm thick Cu plates in HEC 2

HEC readout structure

- $\delta\eta \times \delta\phi \simeq 0.1(0.2) \times 0.1(0.2)$
- Layer1 (HEC1 Front): $\sum 8$ gaps
- Layer2 (HEC1 Back): \sum 16 gaps summed pseudo pointing in η
- Layer3&4 (HEC2 Front&Back): $\sum_{n=1}^{\infty} 8 \text{ gaps summed pseudo pointing in } \eta$
- 5632 readout channels

ATLAS Calorimetry > Forward Calorimeter (FCal)

- FCal absorber structure
 - 3 modules made of 45 cm thick Cu (FCal1) or W (FCal2, FCal3)
 - 12260 (10200, 8224) holes in FCal1 (FCal2, FCal3) filled with electrodes consisting of an outer Cu tube and an inner Cu rod with 250 µm LAr gap between them
 - rods are centered inside the tubes by quartz fibres wound around the rods

FCal readout groups

- 2×2 (2×3 , 3×3) tubes form one readout group
- 1 (inner and outer border) or 2 × 2 (main part) readout group(s) form one readout channel
- 3524 readout channels

Electromagnetic vs. Hadronic Showers

An electromagnetic shower

- consists of visible EM energy only
- is very compact ($X_0 \simeq 2 \text{ cm}$)
- can be simulated with high precision since mostly electromagnetic processes need to be calculated
- allows high accuracy calibration (see talk by Stathes for details)

A hadronic shower

- consists of EM and hadronic energy (some invisible)
- is very large ($\lambda_0\simeq$ 20 cm)
- is difficult to simulate since it involves many QCD processes
- limits the accuracy for calibration (mostly due to large fluctuations)
- The examples show 50 GeV showers of an electron (left) and a pion (right) in iron

5th

Hadron Calorimetry in ATLAS

- A hadronic shower consists of
 - EM energy (e.g. $\pi^0 \rightarrow \gamma \gamma$) O(50 %)
 - visible non-EM energy (e.g. dE/dx from π^{\pm}, μ^{\pm} , etc.) O(25%)
 - invisible energy (e.g. breakup of nuclei and nuclear excitation) O(25 %)
 - escaped energy (e.g. ν) O(2%)
- each fraction is energy dependent and subject to large fluctuations

- invisible energy is the main source of the non-compensating nature of hadron calorimeters
- hadronic calibration has to account for the invisible and escaped energy and deposits in dead material and ignored calorimeter parts

S. Menke, MPP München
Lessons Learned in Calorimetry at ATLAS
5th Terascale Detector Workshop, 16. Mar 2012, Uni-Bonn 10

From a Geant4 simulation of EMEC and HEC:

- EM energy strongly anti-correlated with visible non-EM energy
- visible non-EM energy strongly correlated with invisible energy
- need to separate EM part of the shower from the non-EM part
- apply a weight to the non-EM part to compensate invisible energy

How to separate EM fraction from non-EM fraction?

- $X_0 \ll \lambda \simeq 20 \, \mathrm{cm}$
- high energy density in a cell denotes high EM activity
- low energy density in a cell corresponds to hadronic activity
- apply weights as function of energy density

Calorimeter Reconstruction

- all ATLAS calorimeters together provide 187652 cells
- each cell provides mainly the raw reconstructed energy in MeV

A tower is a group of cells (or even a group of fractions of cells) in a fixed $\Delta \eta \times \Delta \phi$ grid over some or all samplings

- contains the sum of cell (fraction) energies and the center of the grid square (η and ϕ) as members
- in use in ATLAS are 65536 LAr EM only LArTowers with $\Delta\eta imes \Delta\phi = 0.025 imes 2\pi/256$
- and 6400 CaloTowers including all calorimeters with with $\Delta\eta imes\Delta\phi=0.1 imes2\pi/64$

A cluster is a group of cells (or even fraction of cells) formed around a seed cell

- is the main reco object for calorimetry
- with either a fixed size in $\Delta\eta \times \Delta\phi$ (sliding window used for electrons/photons)
- or variable borders based on the significance of the cells (topo cluster used for hadrons/jets/MET/soft photons)
- contains lots of data members based on weighted cell members for energy, position and shape

S. Menke, MPP München
 Lessons Learned in Calorimetry at ATLAS
 5th Terascale Detector Workshop, 16. Mar 2012, Uni-Bonn 12

Calorimeter Reconstruction **>** From Signals to Cells

- Optimal filtering principle:
 - need known physics signal shape g(t)
 - discrete measurements (signal plus noise): $y_i = Eg_i + b_i$ in 5 samples each 25 ns
 - and autocorrelation matrix from noise runs: $B_{ij} = \langle b_i b_j \rangle \langle b_i \rangle \langle b_j \rangle$
 - estimate amplitude *E* with $\tilde{E} = a^t y$ from minimization of $\chi^2(E) = (y Eg)^t B^{-1} (y Eg)$
 - solution is given by OF weights $a = \frac{B^{-1}g}{g^t B^{-1}g}$

Ionization Signal

Readout Signal

Clusters

Cluster algorithms need to serve multiple purposes

- suppress noise (electronics noise and pile-up)
- keep electromagnetic showers in one cluster
- separate multiple signals which are close by
- work on very different sub-systems Plots on the right and below show large variations in η for
 - electronics noise for 2011 was set to the level of 2010 i.e. without any optimization for MinBias events ($\sim 10 - 500$ MeV)
 - total noise for 2011 for 50 ns bunch spacing and \sim 8 MinBias events per bunch crossing $(\sim 10 - 10^4 {
 m MeV})$
 - cell volume ($\sim 2 \cdot 10^4 3 \cdot 10^8$, mm³)

Cluster Making

- form clusters around seed cells with $|E_{\text{seed}}| > 4(\sigma_{\text{elec-noise}} \oplus \sigma_{\text{pile-up-noise}})$
- expand clusters around neighbor cells with $|E_{neigh}| > 2\sigma$
- include perimeter cells with $|E_{cell}| > 0\sigma$
- merge clusters if they share a neighbor cell
- expansion is driven by neighbors in 3D: usually 8 neighbors in the same layer (2D) plus cells overlapping in η and φ with central cell in next and previous layer (just 2 if granularity would be the same)

Cluster Splitting

- search for local maxima in cell energy with *E_{seed}* > 500 MeV in all clustered cells in EM-samplings (HAD-samplings secondary)
- re-cluster around local maxima with same neighbor driven algorithm but no thresholds and no merging
- cells at cluster borders are shared with energy and distance dependent weights

Topological Cluster Example

- look at di-jet MC sample including electronics noise with activity in the forward region
- plots show |E_{cell}| on a color coded log-scale in MeV in the first (EM) FCal sampling for one event

 \triangleright 2 σ cut is removing cells from the signal region

- \blacktriangleright 4 σ cut shows seeds for the cluster maker
- after clustering all cells in the signal regions are kept
- cluster splitter finds hot spots

S. Menke, MPP München

Topological Clusters

Number of relevant clusters per particle

- there can be more than 1 cluster in a cone around the original pion direction
- but the number of relevant clusters (fraction of energy) is small
- top plot shows energy fraction in the 3 leading clusters for charged pions vs. the pion energy in the barrel
- bottom plot shows the same for neutral pions
- for E > 2 GeV more than 90% or the energy are in the 2 leading clusters (charged pions)
- for neutral pions significant energy only in leading 2 clusters and only in 1 if photons can not be resolved

Cluster Moments

- shape variables calculated from the positive cells in a cluster
- first a principal value analysis is run on the cluster cells
 - provides centroid 3 major axes of the shower
- angles of the major axis w.r.t. IP-shower-center direction are calculated
- other shape quantities defined by moments of the form

$$\langle x^n \rangle = \frac{1}{E_{\text{norm}}} \times \sum_{\{i | E_i > 0\}} E_i x_i^n$$
, with

• typical choices for x: $\rho = E/V$, r, λ

Performance Electrons and Photons

- ▶ high $p_{\perp} > 10$ GeV isolated electrons and photons are reconstructed with fixed size LAr EM clusters in units of the middle sampling granularity of $\Delta \eta \times \Delta \phi = 0.025 \times 2\pi/256$: 3 × 5 for $|\eta| < 2.5$
- ► tracks are matched to EM clusters within a $\Delta \eta \times \Delta \phi$ window of 0.05 × 0.1 (large in ϕ to allow for bremsstarhlung)
- if a track match is found the object is an electron and the cluster is re-clustered in size: 3 × 7 (barrel); 5 × 5 (endcap)
- without a track match the EM cluster is called a photon candidate
- ► in the forward area 2.5 < |η| < 4.9 topo clusters are used instead of sliding window clusters since no tracking is available here and the cluster moments of topo clusters provide good electron/pion separation power
- MC based energy corrections are applied and the absolute scale is set with $Z \rightarrow e^+e^-$ events

S. Menke, MPP München 🚽 Lessons Learned in Calorimetry at ATLAS 🕨 5th Terascale Detector Workshop, 16. Mar 2012, Uni-Bonn 19

Performance Electrons and Photons

 low p_⊥ < 10 GeV photons are reconstructed with topo clusters
 note that phtons from π⁰s start to merge (separation less than a cell width in the middle layer) for *E*^{π⁰}_⊥ > 10 GeV

 plots show reconstructed di-photon masses in various |η| regions

S. Menke, MPP München
 Lessons Learned in Calorimetry at ATLAS
 5th Terascale Detector Workshop, 16. Mar 2012, Uni-Bonn 20

Performance Jet Reconstruction in ATLAS

- Modern standardized jet algorithms like SISCone (JHEP 0705 (2007) 086), Kt (Nucl. Phys. B 406 (1993) 187, Phys. Rev. D 48 (1993) 3160), and AntiKt (JHEP 0804 (2008) 063) have been evaluated by ATLAS
 - these jets are collinear and infrared safe
 - are available in a standard C++ library (FastJet by Matteo Cacciari, Gavin Salam and Gregory Soyez)
 - are seedless and iterative
- AntiKt in inclusive mode was found to be the most useful algorithm for ATLAS
 - AntiKt combines like Kt pairs of objects based on a $\min\left(p_T^{j^{2x}}, p_T^{j^{2x}}\right)$ scaled distance metric $\Delta R_{ij}^2/R^2$ in $y \phi$ -space
 - Kt uses x = 1 and treats objects with the smallest p_T first
 - AntiKt uses x = -1 and treats objects with the largest p_T first
 - the net result is that AntiKt-jets are much more regular shaped in y - φ space and don't suffer from the "vacuum cleaner" effect like Kt making them easier to calibrate
 - ATLAS uses R = 0.4 and R = 0.6

Jet Reconstruction in ATLAS

Jets, G. Salam (p. 27) └─2. Getting the basics right └─FastJet

Jet contours - visualised

G. Salam, 2008

Jet Calibration in ATLAS

most analyses on 2010 data used simple EM+JES scheme

- topo clusters on EM-scale as input to jet algorithms
- MC based correction function $f(p_{\perp}, |\eta|)$ to restore jet p_{\perp} to stable hadron level
- top plot shows correction as function of p_{\perp} for 3 y ranges
- middle plot shows systematic uncertainties on jet energy scale (JES) for 0.3 < |y| < 0.8

more sophisticated approaches exist

- global cell weighting (GCW) applies energy-density dependent weights to all calorimeter cells
- local hadron calibration (LCW) classifies and calibrates topo clusters as em or hadronic
- global sequential calibration (GSW) modifies EM+JES by jets-shape based correction factors
- bottom plot compares light-quark gluon-jet-response for different calibration schemes

LCW is used in ATLAS for missing transverse energy and in jets for 2011

S. Menke, MPP München

Jet Physics

- > ATLAS measured the double differential cross-section in $|y|_{max}$ and m_{12}
- bin-by-bin corrections in the observed spectra derived from simulations
- dominant exp. systematic uncertainties stem from the Jet Energy Scale uncertainty
 - $\sim 15-30\%$
- deviations from the QCD would indicate new physics
 - compositeness, excited quarks
- good agreement with NLO QCD predictions is observed

Highest Energetic Jet in ATLAS from 2010 @ $\sqrt{s} = 7$ TeV with $E_i = 3.37$ TeV

S. Menke, MPP München
 Lessons Learned in Calorimetry at ATLAS
 5th Terascale Detector Workshop, 16. Mar 2012, Uni-Bonn 24

Effects of PileUp

- In 2011 the number of minimum bias events (PileUp) per bunch crossing inreased dramatically (from essentially 0 in 2010 up to 25)
- the machine was also filled with more and more bunches
- due to the long and bi-polar shaper response (up to ~ 600 ns) in the LAr calorimeters we are sensitive to PileUp from up to 24 bunch crossings id's at 25 ns nominal distances
 - the energy in the event depends on the history of bunch crossings
- about 7 nominal bunch crossing id's contribute with a positive signal;
 17 with a negative signal

Shaper Response

Isolation Energy

Total Noise for $\Delta t = 50$ ns and $\mu = 0, 1, 2, 5, 10, 20, 50, 100$

 $\mu = 1$

 $\mu = 10$

 $\mu = 20$

 $\mu = 100$

 $\mu = 50$

Tot. noise (μ=100, Δ=50 ns, DB) (MeV) PS 10⁴ EM1 FM2 EM3 Tile 10³ Tile2 Tile FCal1 A FCal2 104 FCal3 D HEC1 HEC2 HEC3 10 HEC4 0 0.5 1.5 2 2.5 3 3.5 4.5 5 4 $|\eta|$

S. Menke, MPP München

Total Noise for $\Delta t = 50$ ns and $\mu = 0, 1, 2, 5, 10, 20, 50, 100$

- Prev. slide shows total cell noise as function of $|\eta|$ for all calorimeter layers
- ▶ moderate increase $\times 2 5$ in the barrel from $\mu = 0$ to $\mu = 50$
- typically ×10 in the endcap
- up to ×100 in the forward region
- > PileUp noise increases proportional to $\sqrt{\mu}$
- > a 20% increase in noise means $25 \times$ more clusters due to noise!
 - thresholds are adjusted now for 2012 running
 - $\mu = 20$ is expected as average condition in 2012
 - aim for thresholds of 20 or 30 depending optimizations

Conclusions

Calorimetry in ATLAS is a very diverse subject due to

- mixture of different detector technologies
- combined with changing conditions due to the LHC
- and different requirements for physics (high p_{\perp} isolated electrons/photons vs. jets)
- Topological Clusters are found to address most of above issues
 - only isolated high p_{\perp} electrons and photons in the barrel use fixed size clusters
- Biggest challenge for 2012 is the increasing PileUp