

ATLAS low mass pixels

M. Barbero, L. Gonella, F. Hügging, H. Krüger, N. Wermes

5th Detector Workshop of the Helmholtz Alliance "Physics at the Terascale" Bonn, 15/03/2012

Laura Gonella – University of Bonn – 15/03/2012

Introduction

- The ATLAS pixel detector @ LHC has a material budget of 3.5% X₀ per layer (*)
 - Modules: 1.0% X₀
 - Cables: 0.5% X₀
 - Mechanics + cooling: 2.0% X₀
- Vertexing and b-tagging require an upgraded pixel detector with lower material budget
 - IBL: 1.5% X₀
 - Target for Phase-I, HL-LHC: 1.0% X₀

(*) All X_0 numbers in the talk are per layer

- Different techniques are proposed/investigated to reduce the detector material
- Modules
 - Large thin FE electronics
 - Through Silicon Vias (TSVs)
- Services
 - Novel powering schemes
 - Al flex cables for services design
 - CO² cooling
- Mechanics

3

- Carbon foam

- Different techniques are proposed/investigated to reduce the detector material
- Modules
 - Large thin FE electronics
 - Through Silicon Vias (TSVs)
- Services
 - Novel powering schemes
 - Al flex cables for services design
 - CO² cooling
- Mechanics

4

- Carbon foam

See also: CO2 Cooling, H. Postema CF materials, K.-W. Glitza

Uni Bonn

ATLAS pixel detector modules roadmap

LHC

- Sensor (250 μ m) = 0.33% X₀
- FE-I3 (190 μ m) = 0.26% X₀
- Flex + pass = 0.38% X₀
- Pigtail = 0.05% X₀

IBL Phase-I & HL-LHC Sensor (200 μ m) = 0.25% X₀ backside metal $FE-I4 (150 \mu m) = 0.18\% X_0$ Pass. • lines on FE **TSVs** Flex + pass = 0.27% X₀ • Sensor **FE-I4** 18.8 x 20.2 mm² Full 3D hybrid pixel module **Optical In Opto Electronics** Power In and/or Voltage Regulation **Digital Layer** Analog Layer 50 um Sensor Layer See also: 3D Integration and New Pixel Developments, M. Barbero ~0.7% X₀ <0.5% X₀

Optical Out

flex

6

- Current flip chip technique: IZM solder SnAg
- During reflow T as high as 260°C
- The chip bends up at the top corners due to the CTE mismatch between metal layers and Si bulk
- Bending >15 μ m \rightarrow disconnected bumps
- Required thickness for FE-I4: $450\mu m \rightarrow 0.53\% X_0$ for IBL
 - IBL target: 1.5% X₀
- Need to use a handle wafer during reflow to keep the chip flat

- 3 methods tried together with IZM Berlin
 - Wax
 - Brewer glue
 - Polyimide glue
- Wax and brewer glue
 - Carrier removal is done with moderate heating process
 - Reflow temperatures are enough to partly melt the glue → handle wafer can move during reflow → unconnected bumps at the top corners of the chip
- Polyimide glue
 - Carrier removal is done via laser exposure (glass carrier used)
 - Reflow temperatures do not dessolve the glue → no bumps disconnected!

ATLAS pixel module with 90µm thick FE-I2

Thin chip modules – Process flow

- IBL pre-production modules
 - Sensor: 3D (single chip), planar (single and double chip)
 - FE-I4: 100μm, 150μm
 - Flex
- Electrical and mechanical tests demonstrated
 - Success of new flip chip method
 - No damage due to carrier removal, handling, thermal cycling

Dressed module: planar, single chip, 150µm thick FE-I4

- Before thermal cycling
 - All pixels connected
 - Dark spots = passive comp on flex
 - No damage due to wafer removal and handling

- -30°C +30°C
- No pixels disconnect during thermal cycling

Dressed module: planar, single chip, 150µm thick FE-I4

- Before thermal cycling
 - All pixels connected
 - Dark spots = passive comp on flex
 - No damage due to wafer removal and handling

- After 10 thermal cycles
 - -30°C +30°C
 - No pixels disconnect during thermal cycling

TSVs for hybrid pixel detectors

- UBonn started TSV (vias last) development with IZM three years ago based on FE-I2/3 (ATLAS Pixel) readout electronics:
 - IZM offers two TSVs processes: tapered side wall and straight side wall TSVs
 - IZM integrates the TSV process into the bump bonding process (make TSVs first and afterwards do BB)
 - We profit from ultra thin (< 100µm) flip chipping (developed for bumped FE-I4 chips for the ATLAS IBL)
- Status
 - Tapered and straight side wall TSVs tested on ATLAS readout and monitor wafers
 - \rightarrow both processes work
 - Batch of 2 FE-I2 ATLAS wafer have been processed:
 - 1 wafer without bump bonding to test the TSV alone → finished, bare chips available
 - 1 wafer with bump bonding to ATLAS pixel sensors → finished, modules available

Straight and Tapered Side Wall TSVs

- Straight side wall TSV
 - Bosch process
 - Aspect ratio 2 5:1
 - Max Si thickness: 100 150µm
- Tapered Side Wall TSV
 - Vias are etched in one step and oxide is deposited after etching
 - Simpler deposition process of isolation layer using thin film polymers
- Tapered walls
 - Side angle 72°
 - In this example
 - Via diameter on the bottom: 41µm
 - Via diameter on the top: 95µm
 - Si thickness: 77µm
 - 150µm pad size (FE-I2) → 100µm max
 Si thickness

Straight side wall TSVs on monitor wafer

Tapered TSV for ATLAS Pixel FE-I2/3

• Backside processing

- Thinning to 90µm
- Silicon Via etching (tapered)
- Passivation
- Cu deposition
- Re-Distribution Layer (RDL)

- Frontside processing
 - Cu pad to bond pad interconnect (plug)
 - Bump deposition
 - Dicing

- Built 16 modules with
 - FE-I2 chips (wafer map available), 90µm thick, with tapered TSV and RDL
 - Planar n-in-n sensor
- 2 modules mounted on boards for electrical tests
 - Both modules work fine

Tests: TSV module: wire bonds on backside (i.e. TSVs used for operation)

- Modules operated via TSV and RDL
- Noise measurement with and without HV shows disconnected pixels
 - Expected, the old flip chip method was used (i.e. no handle wafer during reflow)
 - For disconnected pixels the noise stays the same indep. of HV
- Module works fine \rightarrow no indication of extra noise

universitätbonn Tests: TSV module: wire bonds on backside (i.e. TSVs used for operation)

Immediate plan: FE-I4A modules with TSV i.e. chip plus sensor

- Next steps are to use a FE-I4A chip using the same process:
 - 6 times larger than FE-I2/3 but thickness must be 90µm (note: IBL chips have 150 µm)
 - Use thin flip chip method currently developed for IBL modules
 - Wire bond pads are already prepared for TSV usage:
 - Half of the pad is ,empty' in BEOL layers
 - Top metal layer of the pad is connected to the first metal layer
 - No frontside processing needed
 - 3 FE-I4 wafers foreseen for the processing at IZM
 - 3 6 months process time at IZM, including bump bonding to sensors

Light services

- Trackers services at LHC
 - Dominate the material budget at large η
 - Saturate cable channels
- Main contribution: power cables
 - ATLAS pixel detector: direct power, 8 cables/modules, 1744 modules

- Situation can get even worse for upgraded trackers
 - Higher FE I consumption, higher granularity → higher cable volume
 - Same cable channels

See also: Novel Powering Schemes, K. Klein

Light services

- Trackers services at LHC
 - Dominate the material budget at large η
 - Saturate cable channels
- Main contribution: power cables
 - ATLAS pixel detector: direct power, 8 cables/modules, 1744 modules

- Situation can get even worse for upgraded trackers
 - Higher FE I consumption, higher granularity → higher cable volume
 - Same cable channels

See also: Novel Powering Schemes, K. Klein

Light services for upgraded trackers:

- Novel powering schemes (serial powering, DC-DC conversion): low I, high V
 - Use AI instead of Cu for cable design

Serial powering: material reduction

- SP is a current based power distribution scheme that aims at reducing the transmitted current wrt to a conventional voltage based powering scheme:
 - $nI_{mod} \rightarrow I_{mod}$: A scales of a factor n
- Same current scaling factor could be obtained in a voltage based powering scheme with DC-DC conversion if conversion factor m=n

Serial powering: material reduction

- Further material reduction, SP specific
 - Differently from a voltage based powering scheme, the V_{drop} is limited only by the power density and the I source output voltage capability

 \rightarrow a higher V_{drop} can be allowed in areas where the amount of material/space to fit the cables is critical to further reduce A

- At system level, a SP scheme requires some dedicated features
 - AC-coupled data communication
 - Modules have a different gnd potential
 - Widely used in telecommunication
 - Protection to avoid loosing all modules in a chain if one fails
 - Slow ctrl from the DCS to switch ON/OFF selected modules
 - Fast response against over-voltage
 - Non trivial:
 - When ON (mod OFF), low power density
 - When OFF (module ON), protection draws no power
 - Low material & rad hard
 - HV distribution
 - Should be designed to avoid shorting the SP chain
 - Should guarantee same HV to all modules

SP for the ATLAS pixels

- Conical layout, outer layers \rightarrow SP chain of 8 modules
- On stave → I flows from module to module
- On module \rightarrow I splits in parallel between the chips
- On chip → I to V conversion: Shunt-LDO regulator integrated in FE-I4 (no extra material!!!)

SP for the ATLAS pixels

Conical layout, outer layers \rightarrow SP chain of 8 modules

Stave + multilayer cable for SP

- Al layer for power
- Cu multilayer for signals
- Al layer glued on Cu layer, connection via TAB bonding

Stave + multilayer cable for SP

- Al layer for power
- Cu multilayer for signals
- Al layer glued on Cu layer, connection via TAB bonding

• 4-chip FE-I4 modules

- Not yet available
- For this 1st SP stave prototype use 2-chip FE-I4A modules

Stave + multilayer cable for SP

- Al layer for power
- Cu multilayer for signals
- Al layer glued on Cu layer, connection via TAB bonding

4-chip FE-I4 modules

- Not yet available
- For this 1st SP stave prototype use 2-chip FE-I4A modules

- Module flex for 2-chip FE-I4A modules
 - Received last week, passives being soldered
 - Features
 - AC-coupling for clk and cmd lines
 - HV distribution scheme for SP
 - Vref generation for Shunt-LDO (not integrated in FE-I4A)
 - Commercial OV protection

Stave + multilayer cable for SP

- Al layer for power
- Cu multilayer for signals
- Al layer glued on Cu layer, connection via TAB bonding

Readout: USBPix

- New adapter card
- Cfg 4 chips at the same time
- Read back one chip at a time

• 4-chip FE-I4 modules

- Not yet available
- For this 1st SP stave prototype use 2-chip FE-I4A modules

- Module flex for 2-chip FE-I4A modules
 - Received last week, passives being soldered
 - Features
 - AC-coupling for clk and cmd lines
 - HV distribution scheme for SP
 - Vref generation for Shunt-LDO (not integrated in FE-I4A)
 - Commercial OV protection

- Proposed an alternative design for the IBL detector services with this technology
 - Baseline: multilayer Cu-Al flex with wings
 - Alternative: laminated stack of single sided Al flex with wings
- UBonn investigated an aluminum flex technology to design services for the upgrades of the ATLAS pixel detector
 - Low material solution
 - Mechanical flexibility & electrical robustness
- Technology choice: full aluminium "chip on flex" technology from SE SRTIIE, Ukraine
 - Already in use in the ALICE Silicon Strip detector (SSD)

ALICE SSD hybrid flex

ALICE SSD HV flex

Proposed an alternative design for the IBL detector services with this technology

- Baseline (conservative approach): multilayer Cu-Al flex with wings
- Alternative: laminated stack of single sided Al flex with wings

IBL services

- UBonn is actively investigating techniques to reduce the material budget of the ATLAS pixel detector for IBL and future upgrades (Phase-I and HL-LHC)
- The effort concentrates on reducing material from the modules and the services

An ATLAS pixel detector featuring large thin FE, TSV, serial powering, and Al flex services would have ~1% X_0 less than the present detector

- AC-coupled data transmission is needed for serially powered detector systems as every module is on a different ground potential
- An AC-coupled link requires
 - RX inputs self biased
 - DC balanced data
- RX
 - FEI4A: Integrated fail safe
 - USBPix adapter card: external fail safe
- Data
 - Clk is inherently DC-balanced \rightarrow OK
 - DO is 8b10b encoded → OK
 - Cmd is not DC-balanced → needs manchester encoding

AC –coupling tests

- Cfg sent to the chip
- Configured chip sends 8b10b enc IDLE
- Chip configuration works!

Noise:

196.2 (17.41)

Al flex technology: electrical performance

