Overview of instabilities in
(storage ring) light sources

S. White

L] L4
. 000 % .
(3 o o
oy O @ o
oq .... o ®
YY) @e°°

ESRF | The European Synchrotron




. OUTLINE

Low emittance rings lattice design
Collective effects and instabilities in low emittance rings

Impact of short bunches
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. BRILLIANCE

Brilliance is the main performance parameter for storage ring light source:
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. LOW EMITTANCE RINGS LATTICE DESIGN
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Starting from MAXIV in 2015 many facilities world-
wide have upgraded to 4th generation storage ring
design:

- Application of MBA concept

- 1-2 order of magnitude reduction of emittance

» Increased charge density

Common trends arise in all recent lattice designs:

- Increased number of dipoles
- Strong distributed focusing and sextupoles

- Reduction of the magnets, vacuum chambers
aperture and ID gaps

Overall densification and miniaturization of
accelerator components and reduction of
transverse and momentum acceptances

\7%

Collective effects and their consequences enhanced

Temporally Coherent Synchrotron Light Sources - 27/02/26 - S. White

Antechamber

R. Ganter et al., Vacuum
chambers for the Swiss light
source, PRAB 27, 053201

CBN dipole
chamber

T. Shaftan, Complex bend
lattice, LER2025

r—b

III_- i ,-— u -‘IIT ‘Ill

10,0575

T, (m)

0.035

{0.0125




. PARAMETERS AND OPERATING MODES

Modern light sources cover a wide range of parameters on which collective effect and

Instabilities strongly depend:

« Energy, dimension: radiation damping, instability growth rate

« Optics / beam manipulation: low or negative a, coupling, blow-up, bunch lengthening

« Time structure: multiple bunches low current, few bunches high current, hybrid

« Motivated by performance (brilliance, photon spectrum, operation): collective effects
studies nevertheless required to ensure design goals in all modes are achievable
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INTRA-BEAM SCATTERING AND TOUSCHEK EFFECT

Particles inside a bunch can collide and result in a transfer of transverse to longitudinal

momentum:

« Energy deviation < MA : IBS, beam size increase (3 planes)

« Energy deviation > MA : Touschek effect, lifetime reduction

« More severe 4" generation light source: increased charge density, reduced MA

» To preserve operating conditions these effects are generally mitigated by increasing the
transverse and / or the longitudinal beam size

» Strong interplay with other collective effects: need to modeled together
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. BEAM COUPLING IMPEDANCE

Beam coupling impedance is the main source of instabilities in storage ring light source, it can
be separated in 2 components:
* Resistive wall impedance
+ Geometric impedance
» Depends on the vacuum vessels shape and materials: minimized during the design and
mechanical engineering phase of accelerator components
Can be short range or long-range: single or multi-bunch
Acts on longitudinal and transverse planes: kick, tune shift
Sets limits on the maximum bunch and beam current: brilliance
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. LONGITUDINAL SINGLE BUNCH INSTABILITIES

Longitudinal impedance mainly has two single bunch effects:
« Bunch lengthening: due to the potential well distortion
* Microwave instability:
« Threshold effect resulting in increase in energy spread
« Driven by longitudinal impedance or coherent synchrotron radiation (CSR)
» Generally relevant for high current/bunch modes (threshold ~several mA) or special low o
modes (threshold lower for short bunches)
» Affects the performance of beam lines using higher harmonics of undulators spectra
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. TRANSVERSE SINGLE BUNCH INSTABILITIES

Short range wake field couple the head and the tail of the bunches:
* Multi-bunch modes (low bunch current): below TMCI threshold
« Timing modes (high bunch current): (well) above TMCI threshold
« Example of ESRF: TMCI threshold 0.5mA, multi-bunch mode min. current/bunch 0.2mA,
max. current/bunch 10mA
» Results in beam loss or emittance blow-up at high chromaticity
» Injection can also be impacted: injection saturation of high current bunches (ESRF), reduction of
injection efficiency with small DA (APS-U)
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Threshold current/mA

MULTI-BUNCH INSTABILITIES

Long range wake fields couple the bunches together:

« Transverse coupled bunch instabilities: generally driven by resistive wall impedance, often not

the limiting factor in light sources

* Longitudinal coupled bunch instability: generally driven by cavities HOMs, can result in total

beam current limitation
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. ION INSTABILITIES

The electron beam ionizes the residual rest gas in the vacuum chambers:

These ions can be in the potential of the beam if their mass is larger than the critical mass
Acrit:maX(Ax’ Ay)
Trapped ions can couple to the beam motion and drive a coherent (usually vertical) instability
Instability growth depends on vacuum, current and beam size
Classified in 2 type:

* Trapped ion instability growth over many turns

* Fastion instability grow along a single bunch train
Both can result in beam loss or emittance growth
Most severe during vacuum conditioning period: temporarily mitigate by Q’, gaps, feedback,
rarely a limit for operation once vacuum is conditioned

o) Longitudinal kick felt by a CO* ion A v, (m/s)

J. Calvey, “Critical mass along APS-U cell”
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. MITIGATIONS

Collective instabilities need to be mitigated to achieve design parameters:
* Impedance optimization at design stage of vacuum components: smooth transitions, HOM
damped cavities, material conductivity
+ Transverse: Q', bunch-by-bunch feedback, coupling
* Longitudinal: bunch-by-bunch feedback, mode feedback, cavity temperature, bunch-by-bunch
fluctuation
Optimization of touschek lifetime using bunch lengthening cavity widely adopted in 4t
generation light sources:
* Indirect mitigation of all single bunch effects
* Some benefits observed in some case for multi-bunch effects
» HC itself can drive longitudinal coupled bunch instabilities

Periodic transient beam loading instability
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. TEMPORAL COHERENCE IN A STORAGE RING?

4t generation light sources tend to have lower lifetime and more severe IBS and collective
instabilities: trend is to lengthen the bunches using HHC

This is obviously not the desired direction to achieve temporally coherent ring based light source.
Compromise need to be found on:
* Bunch/beam current
* Bunch length, transverse emittance and energy spread
» Brilliance would most certainly be reduced: how much can we recover with optics and insertion
device designs?

Can storage ring light source light sources bridge the gap between present 4" gen. rings and FELS?
Special “coherent mode” may feature:
* Many bunches with low current
« Large(r) transverse emittance
* Special optics and undulators, low ID gaps
* On-axis injection
> Flexibility integrated at design stage How short do the

bunches need to be?

“Sacrificial” bunches have been considered:
* Lost for other beam lines
* How much do they perturb high brilliance set-ups?
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