EFFECT OF THE COOLDOWN VELOCITY ON THE PERFORMANCE OF SUPERCONDUCTING CAVITIES

Laurenz Kahl

Bachelor Defence

12.11.2025

AGENDA

01

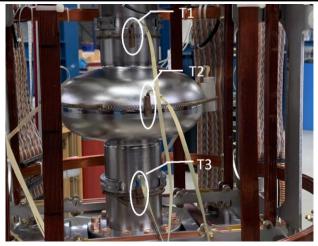
Introduction Cavities Measurements 02

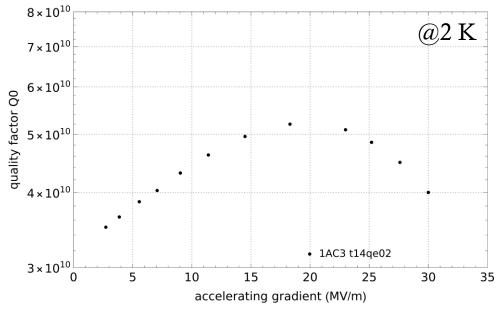
Motivation
Upgrade
EuXFEL

03

Analysis Tool 04

Results
Performance

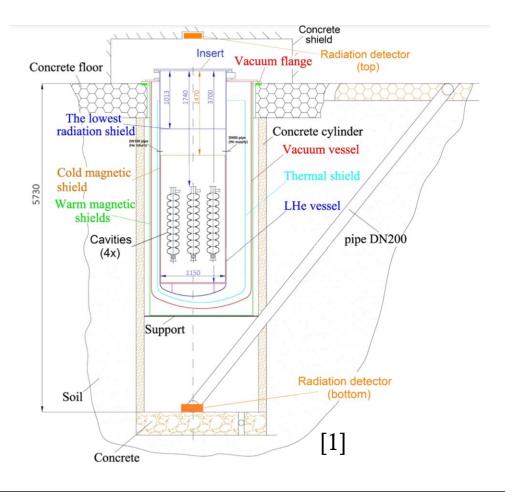

05


Conclusion

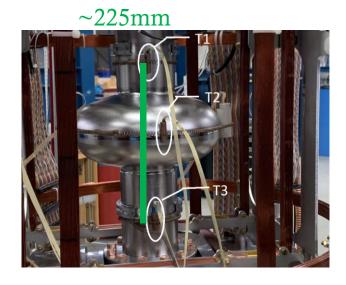
INTRODUCTION

CAVITIES

- TESLA shaped
- Resonant frequency 1.3 GHz
- Figures of merit: Quality factor Q_0 Accelerating gradient E_{acc} Residual resistance R_{res}
- $R_{surface} = R_{BCS} + R_{flux} + R_{res}$
- Mid-T heat treated, \sim 3h @300-350 °C
- 4 cavities investigated

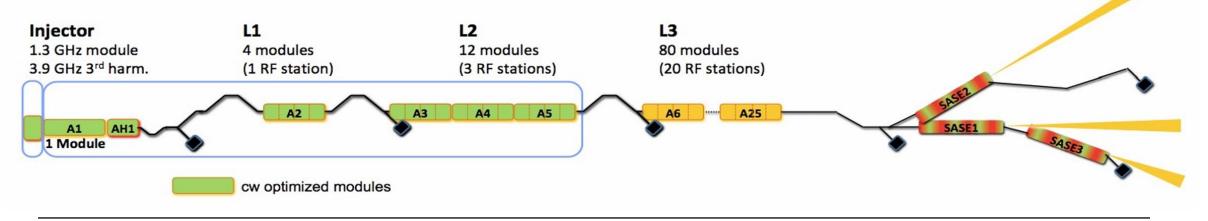


COOLDOWN IN THE VERTICAL CRYOSTAT


- Cavities are positioned vertically
- Temperature sensors on the cavity shielded with a copper tube
- Only single cavity
- Large helium volume
- Filled from the bottom

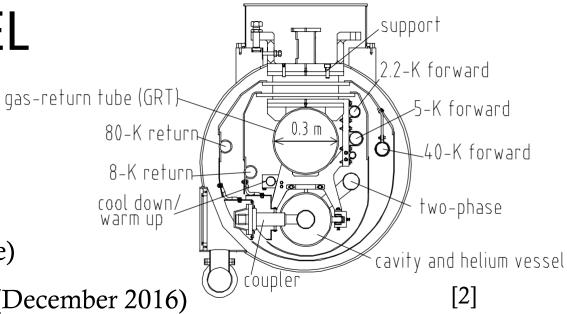
COOLDOWN VARIABLES

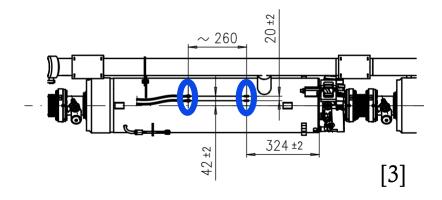
- Measured temperature using Cernox 1030 HT sensors
- Cooldown velocity
 - temperature versus time
 - interval is from 10.7 K to 7.7 K ($T_c \pm 1.5$ K)
- Spatial Temperature Gradient
 - temperature difference at T_c
 - divided by distance ~225 mm (T sensor 1 T sensor 3)

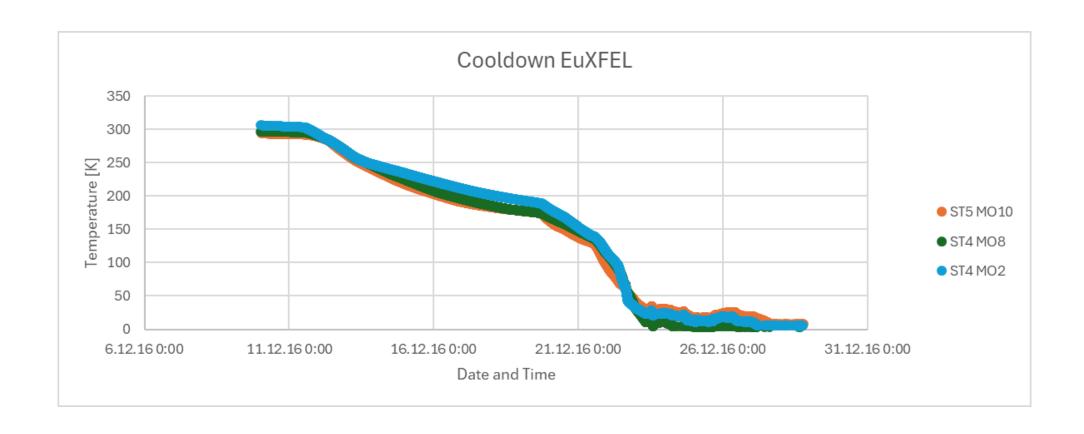

MEASUREMENT PRINCIPLES

- Quality factor (Q₀) is calculated from power used to evaluate constant for E_{acc} calculation (at $\leq 5 \frac{MV}{m}$)
- Accelerating gradient is calculated from constant and power
- Residual resistance is evaluated by a fit over the quality factor (at $\sim 4 \, \frac{\text{MV}}{\text{m}}$) between 2 K to 1.4 K

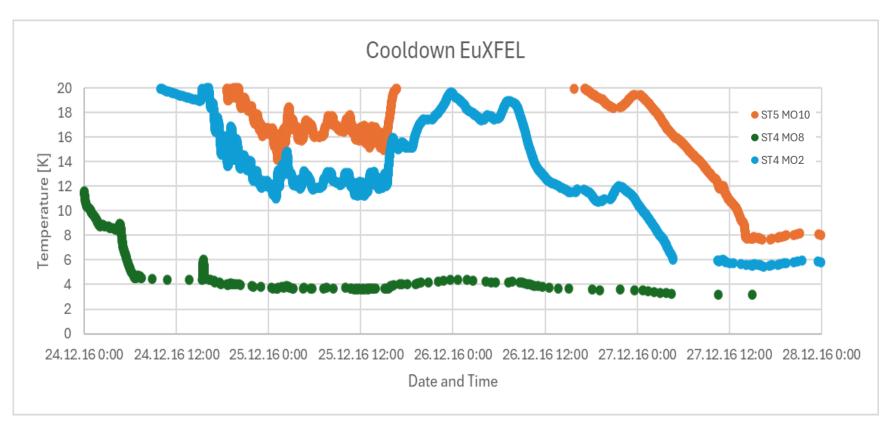
MOTIVATION


EUROPEAN XFEL UPGRADE


- Add new the operation modes High Duty Cycle (HDC) and/or Continues Wave (CW)
- Requirements: Higher quality factor $Q_0 > 3 \cdot 10^{10}$ Accelerating gradient $E_{acc} > 20 \frac{MV}{m}$
- Replace first 17 modules; add the current ones to L3


COOLDOWN OF THE EUXFEL

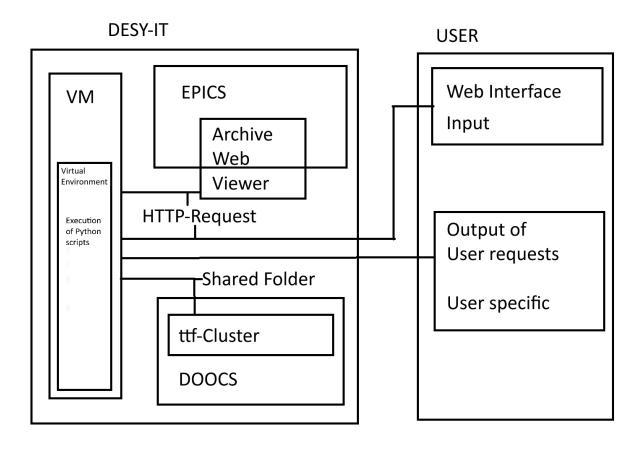
- Cavities are positioned horizontally
- Temperature sensors on the Cryomodule tank
- Cavities are in row (8 nine-cell cavities per module)
- Cooldown of modules was performed in parallel (December 2016)



COOLDOWN OF THE EUXFEL

COOLDOWN OF THE EUXFEL

- T below 9.2 K varies in date
- Cooldown velocity between $0.1 \frac{mK}{s}$ and $0.5 \frac{mK}{s}$


[3]

ANALYSIS TOOL

GOALS

- Gather temperature and measurement data
- Represent cooldown in few variables
- Automate cooldown variable calculation
- Should work for past and future measurements

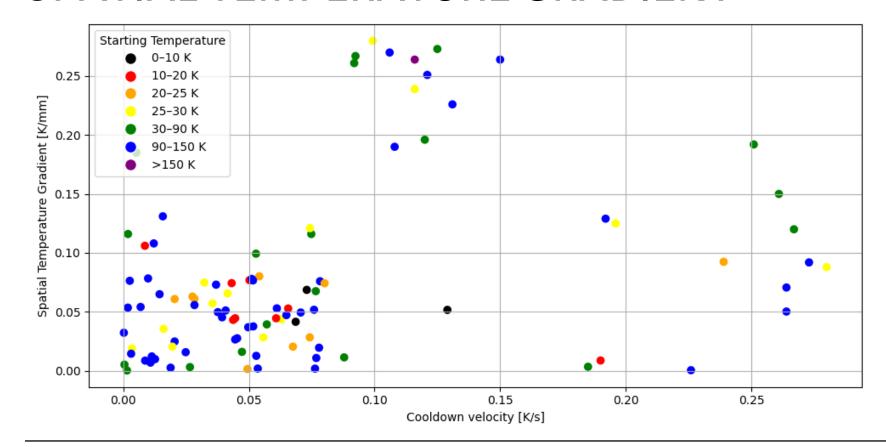
INTERFACING

- Program uses data from two file-systems
- Runs on a virtual machine
- Requests handled sequentially
- Output of collection script is saved

Laurenz Kahl

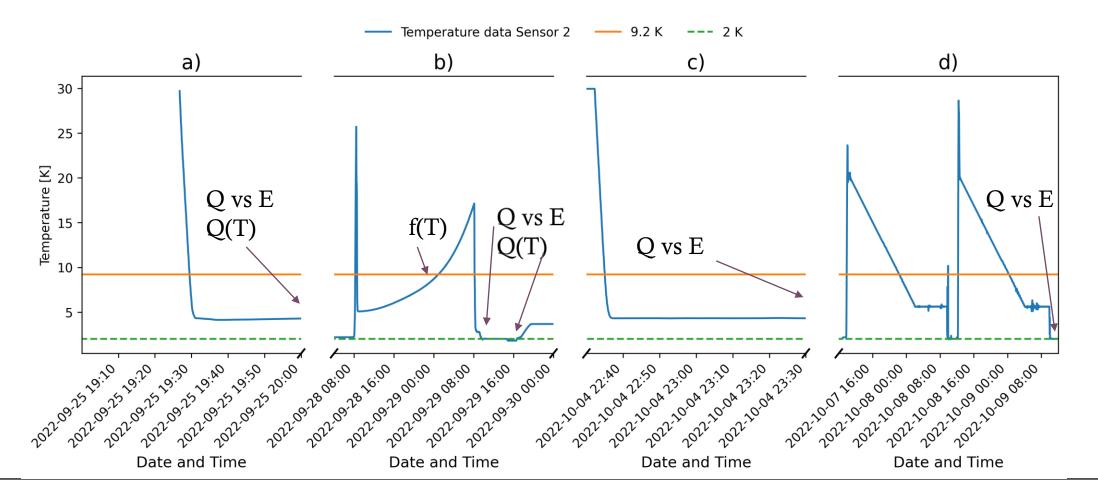
hoose Cavity and Testrun X +	~	-		×
→ C Nicht sicher http://cavcdspeed.desy.de:8080	☆	©	മ	•
Softman a Cavity Covingmane Testron: Te				9

Laurenz Kahl

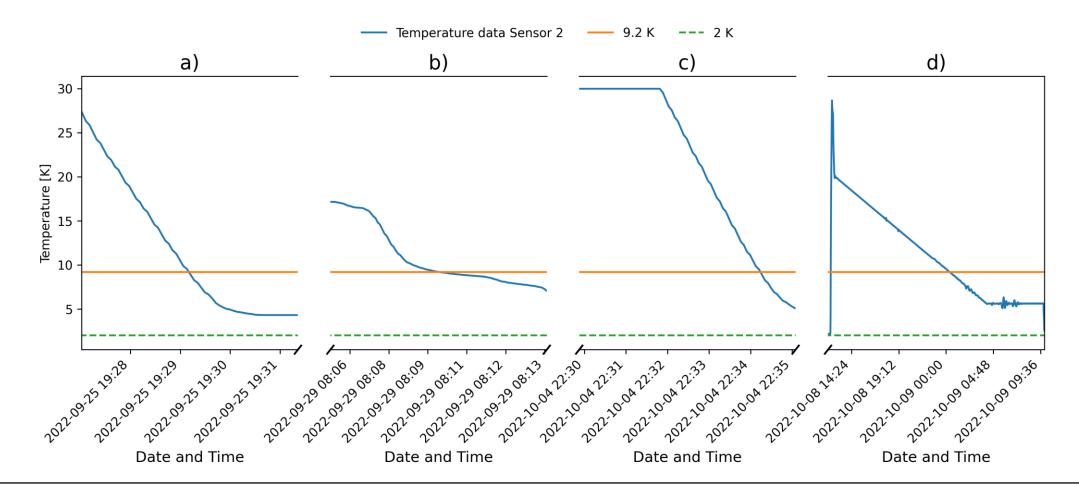

16

RESULTS

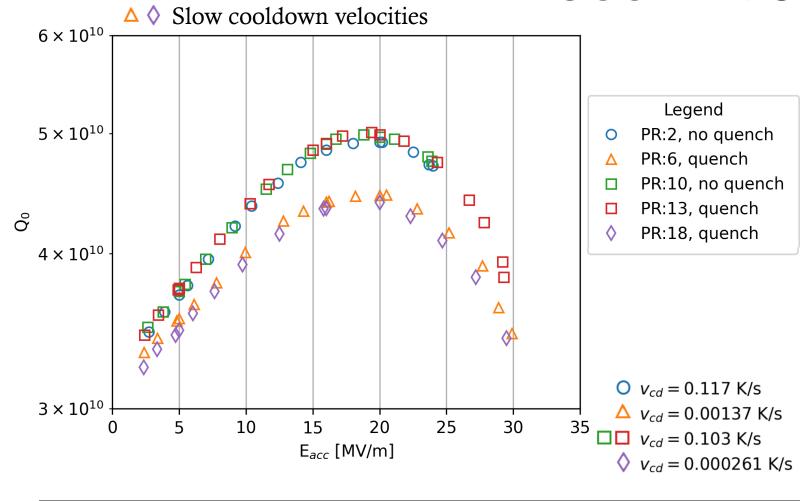
UNCERTAINTY


- Uncertainty for Q_0 is 6%, E_{acc} is 3% (same calibration and vertical test) [1] 20% Q_0 and 10% E_{acc} (change of calibration and test) [1]
- Uncertainty of cooldown velocity is <0.4% statistical error of the temperature measurements ±5 mK [4] worst linear approximation (2.5 K range, 2 points)
- Systematic error of at most 0.3 K (not relevant for cooldown velocity) [5] lower at cryogenic temperatures < 10 mK influences the spatial temperature gradient

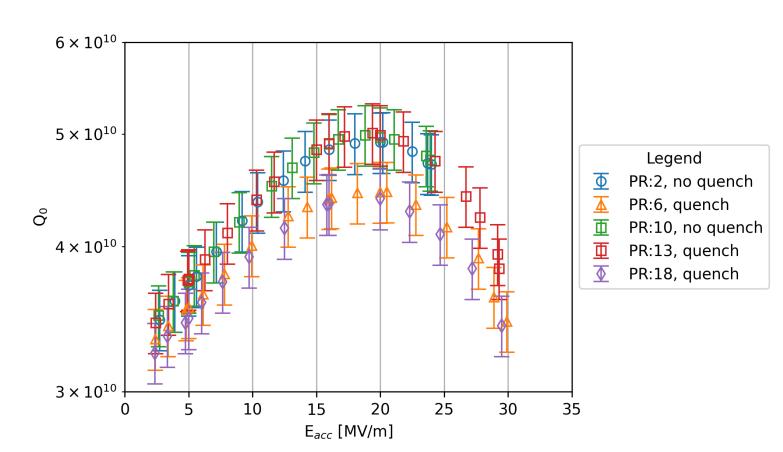
COOLDOWN VELOCITY VS. SPATIAL TEMPERATURE GRADIENT



- Pearson correlation coefficient r = 0.3, p = 0.0012
- Between 90-150 K due to waiting period at ~100 K
- At 10-20 K after f(T)
- Thermocycling for all 20-25 K, 25-30 K and 30-90 K ranges


COOLDOWN OF 1AC3

COOLDOWN OF 1AC3


LOSS IN QUALITY FACTOR

- Cavity 1AC3t12
- Loss of quality factor Q₀
 related to cooldown
 velocity
- Reset after a new warm up to over T_c
- No degradation due to quench

LOSS IN QUALITY FACTOR

△ ♦ Slow cooldown velocities

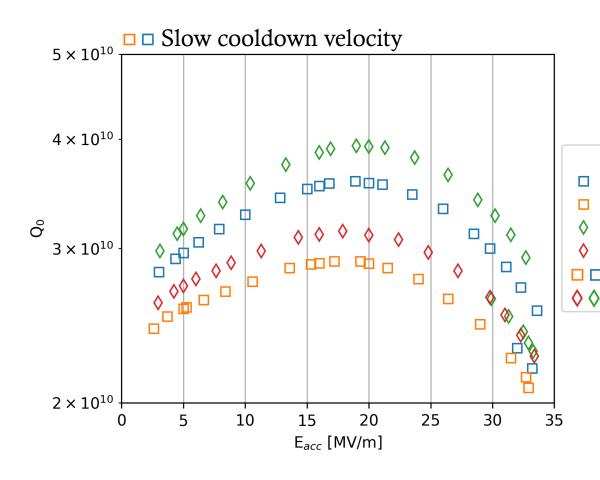
- Cavity 1AC3t12
- Loss of quality factor Q₀ related to cooldown velocity
- Reset after a new warm up to over T_c
- No degradation due to quench
 - $v_{cd} = 0.117 \text{ K/s}$
 - $\triangle v_{cd} = 0.00137 \text{ K/s}$
- - $v_{cd} = 0.000261 \text{ K/s}$

LOSS IN QUALITY FACTOR

power raise	v_{cd} [K/s]	$Q_0 @ 20 \text{ MV/m}$
02	0.106	$4.92e{+10}$
10	0.103	4.97e + 10
13	0.103	$4.99e{+10}$
14	0.103	$4.82e{+10}$
5	0.00866	$4.58e{+10}$
6	0.00866	$4.46e{+10}$
17	0.000261	$4.40e{+10}$
18	0.000261	$4.40e{+10}$
		$\Delta \Omega_{\rm a}$ as $[07]$
		$\Delta Q_{0,max,20} [\%]$
$2 \div 13$	0.106	$egin{array}{c c} \Delta Q_{0,max,20} & [70] \\ \hline 1.4 \end{array}$
$2 \div 13$ $10 \div 13$	0.106 0.103	
		1.4
$10 \div 13$	0.103	1.4 0.4
$10 \div 13$ $13 \div 13$	$0.103 \\ 0.103$	$1.4 \\ 0.4 \\ 0.0$
$10 \div 13$ $13 \div 13$ $14 \div 13$	0.103 0.103 0.103	1.4 0.4 0.0 3.4
$10 \div 13$ $13 \div 13$ $14 \div 13$ $5 \div 13$	0.103 0.103 0.103 0.00866	1.4 0.4 0.0 3.4 8.2

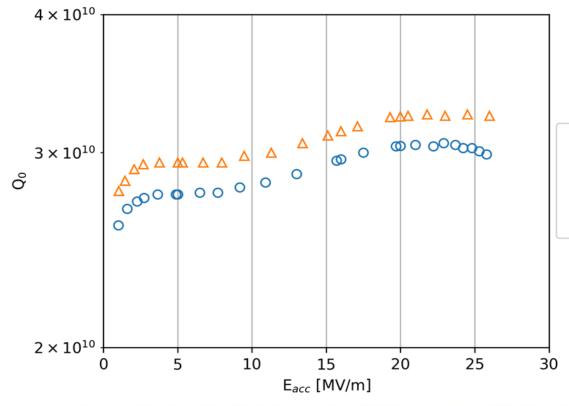
- Compared to maximum quality factor achieved
- Loss of ~12% with slowest cooldown
- Loss changes with cooldown velocity
- Velocity in range of the EuXFEL cooldown

DEGRADATION OF Q_0


Legend PR:23, quench

PR:26, quench

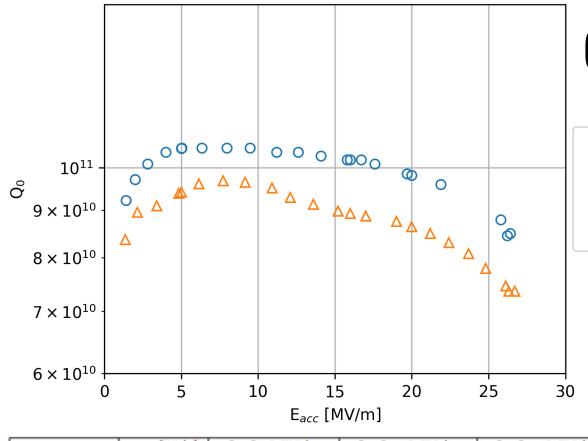
 $v_{cd} = 0.0611 \text{ K/s}$


PR:24, degradation

PR:27, degradation $v_{cd} = 0.00126$ K/s

• Cavity 1RI06t06

- Degradation of the quality factor Q_0 due to quenching
- Loss of quality factor is additive
- Accelerating gradient at quench is not dependent on the cooldown velocity



Q₀ OF A NINE CELL CAVITY

Legend

- PR:2, no quench
- △ PR:6, no quench
- $v_{cd} = 0.117 \text{ K/s}$
- $v_{cd} = 0.00137 \text{ K/s}$
- CAV00029 EuXFEL cavity retreated
- Increase in quality factor >6%

power raise	v_{cd} [K/s]	$Q_0@5MV/m$	$Q_0@16MV/m$	$Q_0@20MV/m$
2	0.117	2.75e+10	2.96e+10	3.04e+10
6	0.00137	2.94e+10	3.14e + 10	3.24e+10
		$\Delta Q_{0,max,5}$ [%]	$\Delta Q_{0,max,16}$ [%]	$\Delta Q_{0,max,20}$ [%]
$2 \div 2$	0.117	0.0	0.0	0.0
$6 \div 2$	0.00137	gain of 6.9	gain of 6.1	gain of 6.6

Q₀ OF A NINE CELL CAVITY

Legend

- O PR:4, no quench
- PR:8, no quench
- $v_{cd} = 0.117 \text{ K/s}$
- \triangle $v_{cd} = 0.00137 \text{ K/s}$

- Measured at 1.5 K
- Loss in quality factor
- Increase in R_{res}
- Getting remeasured

power raise	v_{cd} [K/s]	$Q_0@5MV/m$	Q_0 @16MV/m	$Q_0@20MV/m$
4	0.117	1.05e + 11	1.02e+11	9.82e+10
8	0.00137	9.42e + 10	8.93e+10	$8.64e{+10}$
		$\Delta Q_{0,max,5}$ [%]	$\Delta Q_{0,max,16}$ [%]	$\Delta Q_{0,max,20}$ [%]
$4 \div 4$	0.117	0.0	0.0	0.0
8 ÷ 4	0.00137	10.3	12.5	12.1

RESIDUAL RESISTANCE

- R_{res} increases for all cavities with slow cooldown velocities
- Higher increase for one-cell cavities (0.7 to 0.9 n Ω)
 - initial R_{res} 1.3 to 1.6 n Ω
 - after slow cooldown $R_{res} \sim 2.25 \text{ n}\Omega \ (\sim 50\%)$
- Higher initial residual resistance for nine-cell cavity (2.29 n Ω)
 - increase to 2.56 n Ω (~12%)

Cavity:	1AC3	1Z13	CAV00029
$R_{res} @ v_{cd} \ge 0.01 [n\Omega]$	1.35	1.56	2.29
$R_{res} @ v_{cd} < 0.01 [n\Omega]$	2.26	2.25	2.56

CONCLUSION

- Completed Analysis Tool
- Cooldown velocity affects: the quality factor Q_0 reduced by ~12% (single cell cavity) the residual resistance R_{res} increases
- Accelerating gradient E_{acc} remains unaffected
- No impact on degradation due to quenching
- Needs to be further investigated
 - built more statistic
 - investigate behaviour of nine cell cavities further

REFERENCES

- [1] N. Walker et al. Performance in the vertical test of the 832 nine-cell 1.3 ghz cavities forthe european x-ray free electron laser. 2017.
- [2] H.Lierl et al. Conceptual Layout of the European X-FEL Linear Accelerator Cryogenic Supply 2004
- [3] Schematic of cryomodule and cooldown data at the curtesy of MKS
- [4] Cernox specifications. https://www.lakeshore.com/products/categories/specification/temperature-products/cryogenic-temperature-sensors/cernox.Accsesed on October 6, 2025.
- [5] CernoxTM resistance temperature sensors for high energy physics applications. https://www.lakeshore.com/docs/default-source/product-downloads/application-notes/cernoxforhighenergy.pdf?sfvrsn=756b8bbf_4. Accessed onOctober 6, 2025.