ATLAS Experiment

Physics on the TeV-scale at the Large Hadron Collider

Muon Detectors

Tile Calorimeter

Liquid Argon Calorimeter

ALPGEN, a generator for hard multiparton processes

Björn Gosdzik ATLAS Hamburg weekly meeting

Toroid Magnets

Solenoid Magnet

SCT Tracker Pixel Detector TRT Tracker

Why a new event generator?
Structure
Available hard processes
Conclusion

Overview

- Why a new event generator?
- > Structure
- Available hard processes
- Conclusion

- Important role of multi-jet final states in high-energy collisions
- Provide interesting signatures for several phenomena
 - SM: e.g. top-pair production
 - Beyond SM: e.g. multi-jet decays of supersymmetric particles such as gluinos and squarks
- Good understanding of large multi-jet QCD background

ALPGEN, a generator for hard multiparton processes
Why a new event generator?
Structure
Available hard processes
Conclusion

- Improved algorithms for calculation of cross-sections for complicated processes (final states with over 10 jets) within reasonable amounts of computer time
- Calculation of parton-level matrix elements with evaluation of the full hadronic structure of the final state
 - for study of both signal and background
 - for complete comparison between theory and data
- Involves consistent merging of the matrix-element computation with parton-shower evolution this problem has not been considered in previous tools

Why a new event generator?
Structure
Available hard processes
Conclusion

- ALPGEN consists of several building block
 - Defining the overall infrastructure
 - Implementing the logical sequence of operations
 - Algorithm needed for the evaluation of the matrix element
 - The evaluation of the parton densities
 - Each hard process has a separate set of code elements, specific to it
 - Process initialization
 - Phase-space generation
 - Extraction of flavour and colour structure
 - Default analysis routines
- Interface to HERWIG and PYTHIA

Why a new event generator?
Structure
Available hard processes
Conclusion

Parton-level generation and cross section evaluation

- Parameters required to define the hard process are passed to the code
 - Selection of jet multiplicity
 - Mass of possible heavy quarks
 - Rapidity and transverse momentum cuts
 - etc.
- A first phase-space integration cycle is performed to explore how the cross-section is distributed in phase-space
 - One subprocess is selected (randomly)
 - A point in phase-space is selected (randomly)
 - Initial-state parton luminosity is evaluated for chosen subprocess
 - Spin and colour for each parton are assigned (randomly)
 - Matrix element is evaluated (using the ALPHA algorithm)

Why a new event generator?

Structure

Available hard processes

Conclusion

Parton-level generation and cross section evaluation

- Map of the cross-section distribution among different subprocesses and in phase-space is available at the end of the first integration iteration
- Optimised integration grids are stored in a file after the completion of a series of warm-up integration cycles
- PDF sets and Electroweak parameters are controlled by variables
 - PDF parameterization (CTEQ4M, CTEQ4L,... MRST99-1, MRST01-1,...) and corresponding $\alpha_s(m_z)$
 - **EW** parameters with following inputs:

$$m_W = 80.419$$

$$m_z = 91.188$$

$$\sin^2\theta_w = 0.231$$

$$\alpha_{em}(m_Z) = 1/128.89$$
 $G_F = 1.16639 \cdot 10^{-5}$

$$G_F = 1.16639 \cdot 10^{-5}$$

Why a new event generator?
Structure

Available hard processes

Conclusion

List of hard processes

$$WQ\bar{Q} + jets$$

$$nW + mZ + j \gamma + lH + kjets$$

$$m \gamma + jets$$

$$Z/\gamma Q\bar{Q} + jets$$

$$Q\bar{Q} + jets$$

$$nH + jets$$

$$W + jets$$

$$Q\bar{Q}Q'\bar{Q}'+jets$$

$$W+c+jets$$

$$Q\bar{Q}H + jets$$

$$W + \gamma + jets$$

$$Z/\gamma + jets$$

$$W + \gamma + Q \bar{Q} + jets$$

$$Q\bar{Q} + m\gamma + N$$
 jets

Why a new event generator?
Structure
Available hard processes
Conclusion

Conclusion

- MC tool for generation of complex, high-multiplicity hard final states
- Large fraction of processes have never been calculated before to the level of jet multiplicities
- Evaluation of the matrix elements
- Possibility to carry out the shower evolution and hadronization of the final states

Literature:

M.L Mangano, M. Moretti, R. Pittau, ALPGEN, a generator for hard multiparton processes in hadronic collisions, CERN-TH/2002-129, [hep-ph/0206293]

F. Caravaglios, M.L. Mangano, M. Moretti and R. Pittau, A new Approach to Multi-Jet Calculation in Hadron Collisions, Nucl. Phys. B **539** (1999) 215, [hepph/9807570]