## Standard Model $Z \rightarrow ee$ Analysis

and Fast Shower Simulation Validation

Andrei Nikiforov

A.Glazov, R.Placakyte, V.Radescu

1 Nov 2007

#### Outline

# Tools for Z->ee analysis

- Motivation
- Tool development
- Electron distributions
- $Z \rightarrow ee$  distributions
  - Summary and Outlook

## Use this tools to validate Fast Simulation

- Validation by electrons
- Validation by Z boson

#### Motivation

- Start of SM analysis. Take the simplest channel: Z boson production.
- Develop tools on AOD level for future more complex analyses (i.e. pseudo-W)
- Physics:
  - Z production as a function of rapidity (sensitive to PDFs)
  - $W^{\pm}$  production asymmetry:  $\frac{W^{+}-W^{-}}{W^{+}+W^{-}}$
  - W mass
- Use  $Z \rightarrow ee$  to validate fast simulation.

## Developing a Tool

- Use ElectronAODCollection container
- Take 13.0.20 Athena release
- Start from Z → ee example
- Apply selection:
  - Electron isEm bit = 16
  - E<sub>T</sub><sup>electron</sup> > 20.0 GeV
  - $|\eta^{'electron}| < 2.5$
  - A pair of two electrons with an opposit charge to form Z
- Generated information

| Container              | Data Access Key |
|------------------------|-----------------|
| TruthParticleContainer | "SpcIMC"        |
| McEventCollection      | "GEN_AOD"       |

### **Electron Distributions**







Use ElectronAODCollection container to study properties of the selected electrons from  $Z \rightarrow ee$ 

#### **Electron Reconstruction Resolution**







Compare reconstructed variables with the generated information in order to study resolution, acceptance, etc.

#### Z Boson Reconstruction







Use two electron candidates of an opposite charge to reconstruct *Z* boson

#### **Z** Boson Reconstruction







- Good resolution
- Current Z → ee efficiency is too low
- Reconstruction selection criteria need optimisation

#### Validation of the Fast Simulation

- Use this tool to validate Fast Simulation with different options
- Make accent into calorimetric properties of the reconstructed particles
- Use self-generated Z → ee MC samples:

| File name        | Nr. Events | Release | Comments                                                      |
|------------------|------------|---------|---------------------------------------------------------------|
| Zee.FullSim.root | 1000       | 13.0.20 | Full simulation                                               |
| Zee.Param1.root  | 1000       | 13.0.30 | Option 1: Frozen shower approach                              |
| Zee.Param3.root  | 1000       | 13.0.30 | Option 3: in addition to frozen showers uses parameterization |

### Validation of the Fast Simulation: Electrons







 Very good agreement between all three MC

#### Validation of the Fast Simulation: Z boson





- Invariant mass distributions seems to be slightly shifted for param 1 MC
- This effect is related to energy scale problem which is now understood
- MC with inclusion of analytic shower parameterization into the barrel and EMEC (param 3) has worse description

## Validation of the Fast Simulation: Electron Energy







- Energy scale is slightly shifted for param 1
- Param 3 performs a little bit worse

#### Pit Falls and Observations

- While developing the Tool we also observe some problems which indicate to the potential bugs in the software
- One of such cases:



- Number of electrons should be equal to the number of positrons
- Full simulation MC displays a "charge asymmetry"
- Is it a bug related to the 3.0.20 release?

## Summary and Outlook

- Start to work on a tool, first experience with AOD work.
  Will continue. Want to use AODs on NAF etc.
- Efficiency needs to be understood for cross section type measurement.
- Fast simulation is basically OK, but there is an energy scale problem which is now understood.