Tau Reconstruction activities (a) DESY

David Côté

Introduction

- Under the leadership of Philip Bechtle, DESY is starting to be involved in several aspects of (calo-seed) tau identification...
 - TauRec algorithm:
 - tau track selection (D.C.)
 - $\neg \gamma \rightarrow e^+e^- / K^0_S \rightarrow \pi^+\pi^-$ finding & veto (M. Böhler, D.C.)
 - D0 variables, multi-variate analysis (B. Gosdzick)
 - TauView as replacement for CBNT (D.C.)
 - Tau ID validation:
 - □ Z→ττ control sample (S. Johnert)
 - SUSY analysis with taus:

 - GMSB τ (D. Ludwig, W. Ehrenfeld)

Tau reconstruction

TauRec performances with topoclusters

Recent combined cluster \rightarrow topocluster migration nicely improved the TauRec performances!

Bonn workshop on taus, Oct. 16-18

- Participants: Bonn, DESY, Freiburg, Heidelberg
- Tau reconstruction (calo-seed algorithm):
 - current status and performance
 - σ = isolated cluster + 1-3 tracks ($\Delta R < 0.3$)
 - foreseen direction: explicit $\tau^{\pm} \rightarrow \pi^{\pm}(\pi^{+}\pi^{-}) + \pi^{0}(\pi^{0})$ reco
 - □ focus on low p_T taus (E_T <30 GeV)
 - \blacksquare trk-cluster matching, π^{\pm} / π^{0} cluster separation
 - cell-clustering algorithm optimization
 - conversion finding, trk selection, particle ID
 - calo shower shape, D0 variables (H1, CDF, ...)
 - quite some discussions about software tools
- Calibration of tau energy, efficiency & fake rate
 - focus on $Z \rightarrow \tau\tau(II/jj)$, at increasing integrated luminosities
- Ongoing SUSY analyses & ideas of extensions

Tools for tau reconstruction studies

- Problem: Tau-ID work based on CBNT
 - no longer supported, need replacement
- Solution: *TauView* (?)
 - provides short-term (ntuple) and long-term (AOD format) replacement to CBNT
 - lives in Athena (ideal for detector-level studies)
 - benefit from existing tools (don't reinvent the wheel)
 - explicit interest and help from main EV developpers
 - EventView expertise needed from the Tau WG
 - complementary to root-based AOD access
 - Tau analysis tools session on Nov. 7 (TP week)

Work in progress @ DESY

Track selection for taus

- Mainly studied by tau1p3p people so far...
 - focus only on true taus reconstruction quality
- Started to study impact on fake taus from dijets
 - idea: tight trk selection reduces nb of trk, hence accepts more background events

Candidates with 1 or 3 tracks (before tau-ID)

	$Z/A \rightarrow \tau \tau$	dijets
basic tracking	58.8%	15.4%
basic tracking + b-layer hit	66.8%	20.4%
tau1p3p track selection	73.3%	23.7%

D.C.

Track selection for taus

Thinking about a systematic S/sqrt(S+B) optimization...

...while taking this opportunity to familiarize with SFrame.

D.C.

Note: found bug (soon fixed) in CBNT code of conversion finder (13.0.20).

M. Böhler

DØ variables and multi-variate study

- TauRec variables currently combined in a likelihood should be uncorrelated.
- But some variables actually are highly correlated...
- Implementing variables from the D0 experiment to see if some of them can improve the algorithm performances, using the TMVA package.

B. Gosdzik

<u>Correlations of current TauRec variables</u>

Reconstruction of $Z \rightarrow \tau \tau$ decays

invariant mass of opposite sign taus with cuts

Summary

- We are ramping up and getting involved in tau reconstruction:
 - TauRec algorithm improvement
 - Tau reco tools (*TauView*)
 - Tau-ID validation with Z→ττ
 - SUSY analysis with taus
- We work in collaboration with Freiburg, Bonn, Heidelberg and the Tau WG
 - Very nice workshop two weeks ago!

Collinear approximation (backup)

Analysis cuts:

- |tau eta| < 2.5
- missing E_T direction between the two taus
- 0.2 < x fraction < 0.8 for both taus

Definition of TauRec variables

tau_nStrip number of hit cells in the eta-strip layer of

the EMCalo

tau_nEMCell number of hit cells in EMCalo layer 2

tau_stripET energy in the eta-strip layer

tau_stripWidth2 ET weighted width in the eta-strip layer

tau_EMRadius Radius calculated in the EM Calo only

(presampler, layer 1, layer 2)

tau_lsoFrac
 Isolation in the EM Calo only (presampler)

layer 1, layer 2)

tau ntrack number of associated tracks

tau_charge sum of charge of all associated tracks

Correlation Matrix (signal)

	linear correlation coefficients in %													400				
tau_newd0EM12isof	13	2	19	7	4	4	-5	1	6	-10	-14	-23	8	8	-7	100		100
tau_newd0prf	1	-7	17	-4	-40	-38	-22	-2	-9	18	23	9	-40	-39	100	-7	_	80
tau_newd0isoet	-1	1	-8	3	23	15	8	-1	1	-18	-16	-15	99	100	-39	8		
tau_newd0iso	-1	1	-8	3	23	15	8	-1	1	-18	-17	-15	100	99	-40	8		60
tau_newd0ettr	6	10	17	-3	-8	-6	15	1	33	87	58	100	-15	-15	9	-23	_	40
tau_newd0et05	27	32	48	0	-14	-13	14	0	2	73	100	58	-17	-16	23	-14		
tau_newd0e1e2	15	17	35	-1	-14	-12	13	0	39	100	73	87	-18	-18	18	-10	_	20
tau_newd0dalpha	-5	-7	2	-1	3	4	11	0	100	39	2	33	1	1	-9	6		0
tau_newcharge	5	5	3	1	2	1	10	100	0	0	0	1	-1	-1	-2	1		U
tau_newntrack	19	35	15	4	27	30	100	10	11	13	14	15	8	8	-22	-5		-20
tau_newlsoFrac	-13	-3	-26	6	68	100	30	1	4	-12	-13	-6	15	15	-38	4		
tau_newEMRadius	-17	-9	-31	10	100	68	27	2	3	-14	-14	-8	23	23	-40	4		-40
tau_newstripWidth2	4	4	4	100	10	6	4	1	-1	-1	0	-3	3	3	-4	7		-60
tau_newstripET	67	56	100	4	-31	-26	15	3	2	35	48	17	-8	-8	17	19		-
tau_newnEMCell	87	100	56	4	-9	-3	35	5	-7	17	32	10	1	1	-7	2	_	-80
tau_newnStrip	100	87	67	4	-17	-13	19	5	-5	15	27	6	-1	-1	1	13		400
																		- 100