Experimental challenges for long-lived fourth generation

Alexander Schmidt (U Hamburg)

outline

 introduction *why think about long lifetimes? current direct searches *****ignoring long lifetimes? searches for long-lived exotic particles *****displaced leptons *heavy stable charged particles *****can we learn anything for 4th generation? conclusion *****is long-lived 4th generation experimentally accessible? *how to proceed?

introduction

•small mixing between 4th and 3rd generation could lead to long-lived states

$$\Gamma_{2,W}^{Q_1} = \frac{G_F(m_{Q_1})^3}{8 \pi \sqrt{2}} |V_{Q_1 Q_2}|^2 I_{2 \text{ body}}(m_{Q_2}/m_{Q_1}, m_W/m_{Q_1})$$

- •heavy mesons like $(t'\overline{q})$ or quarkonia $(b'\overline{b'})$ could be formed (or heavy leptons)
- •short lifetimes: immediate decay (no experimental difference to prompt decay)
- •intermediate: decay within detector (displaced vertex)
- •long lifetimes: heavy high-momentum ionizing particle propagating through full detector

Alexander Schmidt, Uni Hamburg

current searches

example: CMS search for b' pairs:
observed I2 same-sign di-lepton events with b-tagged jet
standard b-tagging is inefficient beyond I st pixel layer (4cm)

displaced leptons CMS PAS EXO-11-004

- •CMS search for $X \rightarrow |^+|^-$, where e.g. $H^0 \rightarrow XX$
- •X is spinless long-lived neutral particle
- topology of two leptons from one displaced vertex
 in the tracker
- •topology of a di-leptonic b' decay is similar

Alexander Schmidt, Uni Hamburg

displaced leptons: challenges

displaced track reco: iterative tracking

six iterations:

propagate seed outwards, search new hits
assigned hits are removed from the list
filter tracks to remove fakes or bad tracks
repeat with remaining hits

differences in seeding:

- •first two iterations: pixel pairs or pixel triplets, pt>0.9GeV
- •third iteration: pixel triplets, low momentum tracks
- •fourth iteration: pixel + strip layers as seeds (find displaced tracks)
- •fifth, sixth iterations: strip pairs (for tracks lacking pixel hits)

efficiency measurement

2 cm

CMS Preliminary

cosmic muon eff.

three methods for displaced tracks:

•cosmic muons

*reconstructed (tagged) from muon chambers only
*matched to tracker tracks
*agrees with simulation to 10%
embedding method

*simulated displaced muons embedded into a real data event
*measures how often high occupancy affects tracking eff.

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array}$ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \bigg{)} \\ \end{array} \\ \bigg{)} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \bigg{)} \\ \end{array} \\ \bigg{)} \\ \end{array} \\ \bigg{)} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \bigg{)} \\ \end{array} \\ \bigg{)} \\ \bigg{)}

•validation with K_s

 $\star K_s$ lifetime measurement in 1% agreement with world average

Alexander Schmidt, Uni Hamburg

event selection

CMS PAS EXO-11-004

- •two opposite sign isolated leptons
- pt>38 (25) GeV for electrons (muons)
- $|d_0/\sigma| > 3$ (2) for el. (mu.), reject prompt background
- •vertex fit with two lepton tracks X²/ndf<5
- di-lepton momentum collinear with vertex direction

\rightarrow this is the cut that kills b'

mass distribution

CMS PAS EXO-11-004

Alexander Schmidt, Uni Hamburg

limits

CMS PAS EXO-11-004

for comparison: σ*BR(dileptons) for b' pair production:

m _{b'} =400 GeV	0.11 pb
m _{b'} =500 GeV	0.026 pb
m _{b'} =600 GeV	0.0074 pb

Alexander Schmidt, Uni Hamburg

4th generation and single top 2012

Mar 27th, 2012 10

what do we learn, plans?

- •limits are in the range of 4th gen. cross-sections!!!
- limits are not applicable to 4th gen. due to cuts that would reject b'
- •4th gen. has different kinematics, acceptance, etc...
- •it is worth including 4th gen. to these existing searches, effort should be moderate
- discussions with CMS working group ongoing

•to be continued (with results??) at next workshop...

heavy stable charged particles

•bound q' state propagates through full detector as HSCP CMS Preliminary 2011 : \s = 7 TeV

- •directly observable through distinctive signature:
 - high momentum
 - large energy loss (ionization) dE/dx
 - •long time-of-flight (TOF)
- many searches assume particles to reach the muon system (HSCP identified as muon)

 new studies favor charge suppression due to interaction with matter (calorimeter) → HSCP not identified as muon

•CMS search done with and without muon system Alexander Schmidt, Uni Hamburg 4th generation and single top 2012

principle

CMS PAS EXO-11-022

- trigger: high-pt muon or high missing energy
- •TOF from off-time
 - arrival δ_t in muon chamber

•dE/dx estimators from charge deposited in silicon detectors $I_{h} = \left(\frac{1}{N}\sum_{i}c_{i}^{k}\right)^{1/k}$ $I_{as} = \frac{3}{N} \times \left(\frac{1}{12N} + \sum_{i=1}^{N}\left[P_{i} \times \left(P_{i} - \frac{2i-1}{2N}\right)^{2}\right]\right)$

(P_i =probability for a MIP to produce charge deposit smaller than the i-th)

Alexander Schmidt, Uni Hamburg

background determination

pt and dE/dx uncorrelated for background
use ABCD method to predict background in the signal region

mass determination

CMS PAS EXO-11-022

Alexander Schmidt, Uni Hamburg

4th generation and single top 2012

Mar 27th, 2012 15

limits

CMS PAS EXO-11-022

tracker + muon TOF

Alexander Schmidt, Uni Hamburg

conclusions

- •current direct searches ignore long-lived option (existing limits could be much waker if 4th gen. has lifetime)
- long-lived exotica searches ongoing
- they have impressive sensitity (in the range of 4th gen x-sections)
- •they will be extended to also cover 4th gen. (simple re-interpretation not straightforward)
- discussions with CMS working groups ongoing
- •goal: 2D limits (mass-lifetime)

$\bullet derive \ limits \ on \ V_{b't}$

BACKUP SLIDES

Alexander Schmidt, Uni Hamburg

4th generation and single top 2012

Mar 27th, 2012 18

HSCP systematics

	1 U
Source of Systematic Error	Relative Uncertainty (%)
Signal efficiency	
Trigger efficiency	5
Muon reconstruction efficiency	5
Track reconstruction efficiency	< 2
Track momentum scale	< 5
Ionization energy loss scale (I_{as})	[5,10]
Ionization energy loss scale (I_h)	< 1
Total uncertainty on signal acceptance	[10, 15]
Expected background	10
Integrated luminosity	6