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[ntroduction

How does quantum electrodynamics manifest?

Light by Light scattering:

Originally predicted by the four field interactions involving only
ohotons, mediated by virtual particle loops

The ATLAS col

aboratio

n at CERN LHC reported evidence of high

energy light by light scattering- Later confirmed by CMS

Delbruck Scattering:

Scattering of photons in the Coulomb field of nuclei via virtual
electron-positron pairs

o

st observation was ach

ohoton scattering exper

ieved in a high-energy, small angle
iment carried out at DESY in 1973
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Experimental confirmation of QED Lagrangian:
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elbruck Scattering: Vacuum Birefringence:

Unmeasured for nearly 100 vears
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Vacuum as a polarizable medium:
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[ntroduction

Vacuum as a polarizable medium:
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In an external magnetic field:

=1+ 7A B’ 2
i et Where A, = —a’ =1.32x10724T
n, = 1 + 4AeBezxt 45/40 myC

Vacuum Magnetic Birefringence (VMB):

An,,,, = n/™P —n /M =34, x B> ~ 3.96 x 107** x B;
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Measuring VMB N
An,,,;, = n™" —n"¥ ~ 3.96 x 107%* x B

Polarimetric Scheme::
L ut, X
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Measuring VIVIB

Polarimetric Scheme::

Adyyp
2

2r
VMB effect:  Ag,,,n = T(H\YMB —n"P)L - y = sin20

< L =
‘ | { Magnetic field J EOW,Y
/ J_ [ Magnetic field } I
Linearly polarized Elliptically polarized
input field output field

Eaut,X
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Measuring VMB N

Polarimetric Scheme + optical cavity::

2T Adyyp
VMB effect: ACbVMB — T(n\YMB o nJ‘_/MB)L X Ncavity — Y = N sin20 X Ncavity

« L P> E

out,Y
| | [ Magnetic field J I |

—P>

FTTTTT -
L e L . i I

Eaut,Y

input field output field
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Measuring VIVIB

Brief Introduction to Optical Cavities:

When a laser is on resonance, the field makes an
integer number of cycles per round trip.

T
O

ne frequency spacing between the resonances

f the cavity, known as the free spectral range
C
(FSR) fFSR —
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Cavity Modes

Mirror Reflectivity:
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99.7%
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Measuring VIVIB

Brief Introduction to Optical Cavities:

When a
iINnteger

T
O

The finesse: F =

ne frequency spacing

f the cavity, known as-
C
(FSR): frsr = 57

2L

JrsR

petween the

‘he free spec

Jrwrm
buildup inside the cavity, and the amplification of

the optical path length N = 2F /n

aser is on resonance, the field makes an
number of cycles per round trip.

eSONANces
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, describes the power
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Mirror Reflectivity:

4% ——80% ——99.7%
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Measuring VIMB

Interferometric:

nz

amplitude

e |
/UL RagiRARRRANA

J | Phasemeter
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ilt (s-pol)

/1% frequency
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Measuring VIVIB

Interferometric:
E ﬂ n ;FSR+Abiref
g 5 - L > » >
L1 [ Magnetic field } O
¥ .
\ ‘ Phasemeter =
Sk 0 { Magnetic field J <
i L2 |
ifi (s-pol) A\ NS
“".\ frequency L1 L2

(p-pol)  (s-pol)

- Cavity is birefringent, therefore orthogonal polarizations see resonances at slightly different

cavity lengths, leading to A p¢p:

-We are measuring the movement of the two sets of cavity resonances
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- In the presence of VMB, only the s-polarized resonance will move w.rt the magnet



Measuring VIVIB

L =~

Interferometric:
= | .
= 5

Magnetic field

DA

\  (p-pol)

i L2
iy (s-pol)

1% frequency

.Given some Av sensitivity, we translate this to optical path length sensitivity: AL =

| |
REARAREE

Magnetic field J

magnet

Phasemeter

amplitude

FSR + Apjreg

L1 L2
(p-pol) (s-pol)

2LAAL

C
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VMB Figure of merit: B” X L

“revious VMB Experiments

Experiment Lg[m] N Modulation | B2extdL [T2 m]
OVAL (2017) 0.17 200,000 Pulsed magnet 13.8
BMV (2019) 0.31 270,000 Pulsed magnet 100
PVLAS-LNL (2008) 0.5 100,000 Rotating supercon. magnet 2.6
PVLAS-FE (2016) 1.64 446,000 Rotating permanent magnet 10.3
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Previous VMB Experiments AL

Experiment Lg[m] N Modulation | B2extdL [T2 m]
PVLAS-LNL (2008) 0.5 100,000 |Rotating supercon. magnet 2.6
* PVLAS-FE (2016) 1.64 446,000 |Rotating permanent magnet 10.3

, , magnetic field . ellipticity
polariser mirror mirror modulator analyser
| _ L IN

/ i i 1y LN ZS
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A

PSII Infrastructure

Magnets

- 24 superconducting HERA magnets, each 8.8m

a

in length and 5.3 T in strength, straightened

nd aligned for the ALPS Il experiment:
B=53T— AB*=27T?
Lmagnets =212 m

redicted amplitude in differential path length
nanges: ALyyp = 2.37 X 107 meters.

ALPS Il experiment at DESY is a light shining through a wall
(LSW) axion dark matter search approaching final science runs.

2]
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ALPS
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TastuUCture

Magnets with modulation

- A characteristic modulation frequency of
0.3mHz was already demonstrated

- Romping and discharging the current to

ger

hou

. Potential
AmMHz wit

¢ ReC

erate
[S
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4 pulses over the course of 4

[0 iNncrease this freguency up to
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(a) Modulation of the ALPSII magnet string
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(b) Projected VMB signal
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PSII Infrastructure

, . Designh and performance of the ALPSII
Optical Cavities regeneration cavity

Toob KozLowskl,!" ® LI-WElI WEI,1 ® AARON D. SPECTOR,' ®
AYMAN HALLAL,%? HENRY FRADRICH,! DANIEL C. BROTHERTON,3

- Stable frequeﬂcy lock of lasers to 123-meter ISABELLA OCEANO,' ALDO EJLLI,2 HARTMUT GROTE,* HAROLD
. : . . . . HoLLis,® ® KANIOAR KARAN,?2 GUIDO MUELLER,23 D. B.
high-finesse cavity inside magnet string TANNER,® BENNO WILLKE,2 ® AND AXEL LINDNER'

- World-record light storage time / narrow line
width

*19 meter high finesse cavity in HERA- West

- This is where we are developing VMB
measurement techniques

Hera-W prototype cavity injection optics
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A

Po Il Infrastructure A
Experiment Lg[m] N Modulation | B2extdL [T2 m]

PVLAS-LNL (2008) 0.5 100,000 Rotating supercon. magnet 2.0

PVLAS-FE (2016) 1.64 446,000 Rotating permanent magnet 10.3

OVAL (2017) 0.17 200,000 Pulsed magnet 13.8

BMV (2019) 0.31 270,000 Pulsed magnet 100

VMB in ALPS Il (proposal) 212 100,000 |Ramped supercon. magnet 6000

ALPS Il can generate a larger VMB signal than any previous experiment !!
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ALPSII Challenges

» x10~°

An
- Low modulation frequencies leaves us vulnerable 4,
to dynamic cavity birefringence noise N .
- A low frequency noise arising from the mirrors T i
of the cavity and is thought to be due to < 1“14
thermal and mechanical stress H
- -

Y [mm]

Birefringent map of KAGRA mirror
coatingsin [2.
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ALPS

- Low modulation frec
to dynamic cavity Di

- A low frequency noise arising f

of t
the

ne cavl

A

‘mal ar

anm

Nd |
echanical stress

s thought to

Challenges

‘OIMm

ne d

uencies leaves us vulnerable
‘efringence noise

the MIrrors

e to

. Increasing cavity finesse doesn’t help - PVLAS

- We expect to reach this noise f
orototype and final VMB exper;

- The estimation of this noise sets our sensitivity

goals

00r on both the
ment:

AD fort=1s

Intensity [a.u]

0.15

0.10

0.05

0.00

Frequency [HZ]

40 50

60

70 80 90

|
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|
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Time [s]

|
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ALPS IT Infrastructure

T'he 19m Prototype

- We have a dedicated set up to develop the measurement system to be implemented in ALPS ||
for a VMB search

- 19m long, 30,000 finesse “test cavity” with no magnet in HERA-West Hall

- Our goal: precision cavity birefringence measurements

27



ALPS IT Infrastructure

The 19m Prototype

- We have a dedicated set up to develop the measurement system to be implemented in ALPS ||
for a VMB search

- 19m long, 30,000 finesse “test cavity” with no magnet in HERA-West Hall
- Our goal: precision cavity birefringence measurements

« To demonstrate the sensing sensitivity required to detected VMB at ALPS Il:

. For the prototype must achieve : 3.3 X 10~m/+/Hz for frequencies between 0.3 to 4 mHz

. Laser stabilization system: 2ppm/4/ Hz of a cavity linewidth

28



For a VMB search:

. |f we achieve laser sta

O

cavity with a finesse o

the QED predicted value of VMB w

4— cav

ith

"

n the ALPS Il magne

a SNR of 3 after an i

L =246 m

L =212m

nteg

lization of 2ppm/4/ Hz of the cavity line width on the 245m long
100,000 wit

' string, we would be able to reach

ration time of roughly 22 days

—e >

] e e e e e

I e o e o

| — )

A

AR R R R R RERE

B%..L ~ 6,000

ext

Relative path-length difference:

AL ~2.37x 10 m
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Measurement Technigques

| | AN
. Method devised by John L. Hall in 1995 ,fi f
=
- Individually lock two fields of T o
orthogonal polarization to an optical /_\ J A\ PP —— 2
i 3
cavity i i =
- Read out the difference in the control L2 NN S INS
| A [ L1 L2
signals of the two separate locks 1Y frequency (p-pol)  (s-pol)

corresponding to cavity birefringence

PHYSICAL REVIEW A, VOLUME 62, 013815

Measurement of mirror birefringence at the sub-ppm level:
Proposed application to a test of QED

John L. Hall,* Jun Ye,* and Long-Sheng Ma'’
JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440

(Received 6 January 2000; published 15 June 2000) 31




Measurement

19m Prototype: measuring cavity pbirefringence

L2

iPDH

L1

PDH T ‘

e Ourlab:

YpD. L

‘echniques

\ @] PD,

Phasemeter .8
=
[=3
| :
_ S
F ~ 32,000 )\

19 m L1 L2
(p-pol) (s-pol)

- Lock two fields separated by 2 FSRs to the 19m cavity

« Measu

re thei

- relative beatr

COIres

oondir

ote In-

g to FSR + Bire

ringen

ce

‘ransmission: Tracks the relative frequency between them,

32



Measurement Technigques

Prototype Results Pt. 1

1= , —
E 5.
10~ | 10°
- A weekend measurement of the E—
same beat note between 2 fields of @ 107 | / _
orthogonal polarizations < 0] i
4 g |
| o 10
- Demonstrated a long stable lock of
two lasers locked to the same cavity 107 |
1016 e
10+ 10~ 1) 10~} 10Y

Signal Frequency (Hz)
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Measurement Technigques

Prototype Results Pt. 1

- Cavity length drifts over time leads to a change
in the free spectral range : AFSR

C

_Reminder: Free Spectral Range = 1 12

2Lcavity (p-pol)  (s-pol)

- The length of the cavity is not stable over time

- Length drifts couple into our measurement as
frequency noise in the beat note of the two fields

t=30min

Ol VEsR

34

(p-pol)  (s-pol)



Measurement Technigques

FSR+AFSR+A,,
t=0 ]
o W
o
L2 =
L1 —_—
(p-pol)  (s-pol) — Q. AFSR > > Ay,
=
S
frequency
t=30min Ll L

(p-pol)  (s-pol)

L1 .2 -
(p-pol)  (s-pol)



Measurement Technigques

Prototype Results Pt. 1

10_H);

We can independently sense the drifts in the 0f+ | | 100
cavity length: Purple 101 \ . - Cavity Length Drift

N
FSR+AFSR+A, > ) . C
= 10~ ,, >
3 LN il -8, L
S o 10° [ 107 s
= E , )
%—4 AFSR > > Abf 1)~ E' 10
Trae MG cesy M- S0 D D i 2
frequency 10~ 103 10~ 10! 10"
L1 L2 Signal Frequency (Hz)

(p-pol)  (s-pol) o



Measurement Technigques

. 2 X FSR
FSR + Apirer
\ |

2 X FSR —

FSR + Apjrer

“ ?
1’ :

- J

amplitude
amplitude

frequency : frequency

L1 | L2 | Lé | L1 L2 L3
(p-pol) (s-pol) (p-pol) (p-pol) (s-pol) (p-pol) -




Measurement Technigques

3 2 X FSR |

FSR + Apires :

= - .

A @ 5FSR 5FSR

/

frequency

A

L1

amplitude

L3
(p-pol)  (s-pol)  (p-pol)

L1 L2 L3
(p-pol) (s-pol) (p-pol)
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Measurement Technigques

FSR + FSR + A,

FSR ; 5FSR — SAbf , é‘bf
' | |
O O
E T
H — I
= | :
/] frequency
L1 L2 L3 L1 L2 L3
(p-pol)  (s-pol)  (p-pol) (p-pol)  (s-pol)  (p-pol)

- Lock 3 fields, spaced by 1 FSR wrt each other, 2 fields of the same polarization and one orthogonal

- We measure 2 beat notes and superimpose them to subtract the changes to the cavity FSR due to
length noise

39



Measurement Technigques

3 field Measurement:

| PDH

A2
i \ EI PD: Phasemeter

N N2
:2 \ l
F ~ 32,000
I( 19 m )I

- Lock 3 fields iduviduatlly to cavity, each spaced by 1 FSR

. 2 fields of the same polarization and one orthogonal centered between them

40



Prototype Results

3 field: Cavity Length Noise Subtraction

30
20
N
S
- 10 }
5_.‘
o 0
Q
3
= 107 if-
éﬁ Sf-
-20 | (0f+ —df-)/2
— — Control Signal
-30 1 ! | !
0 5 10 15 20

Time (hours)

(a) Time series of the beatnote frequency drift
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“rototype Results

3 field: Cavity Length Noise Subtraction

101
N

0 ' | ' - | £ : oF. .
| (0f+ —9df-)/2 410V
— 20 : [0FS e e s Cavity Length Drift |
N [
S
£ 10712 |
A =
5 g |
% E 10—13 :
- -10 5]0 = :
o + s
£ i g
-20 1 (0fy —0f-)/2 VWA - 1014 L
— — Control Signal i
'30 L | ] L
0 5 10 15 20 10-15 |
Time (hours) :
(a) Time series of the beatnote frequency drift jo-6 L il ] e ]
10~ 10 10~ 101 10"

Signal Frequency (Hz)



“rototype Results

Current Limitations: 1 :
: . R (5f+ .

. : L : . O0f —0f-)/2 0
TeChnlCC” NOoIse OnN the |nJeCt|Oq tOb‘e Of our 10-11 L ey T ot a | (Caitity I_,{:nz;/th Drift ‘ 10
lasers, that couple to the frequency | Technical Noise
stabilization loops o2 |

S

S

E 10-13 L

=

<]

“ 10—14 i
10°15 |
10—1()’ |

10~

Signal Frequency (Hz)
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“rototype Results

Current Limitations: 11 R -
| e A d f+ .

. : . : . (0f, —40f-)/2 1100
Technical noise on the injection table of our T BRI R . Cavity Length Drift | 1
lasers, that couple to the frequency i Technical Noise
stabilization loops .

& 25
: €
o~ oK
E 10 13 [ >
Demonstration of an interferometric technique for measuring E -
vacuum magnetic birefringence with an optical cavity (,’3] : 3 N
10714 ¢
Aaron D. Spector*!, Todd Kozlowski', and Laura Roberts?
! Deutsches Elektronen Synchrotron DESY, 22603 Hamburg, Germany
2 Maz-Planck-Institut fiir Gravitationsphysik (Albert- Einstein-Institut) 15
and Leibniz Universitat Hannover, 30167 Hannover, Germany 10_ 5 ‘
T ———mm—E—€b————
10—16 | . gty | | | |

10 10~
Signal Frequency (Hz)

https://doi.org/10.48550/arXiv.251014064 104 103
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QuICk

[yt I

1012 |

Reality Check

lll1]

llll L Ll 'Illlll'

Two field
Three field

— — Cavity Length Drift |

Technical Noise 3 10"

1072 |t
| <
3 =
_10—3
jgsie Lo o s ] ¢ o B »
5 | } 1
i ; - QED level :
1105
MER X ii il L ! IR 2 WV | L -
10~* 10-* 10+ 10+ 10°

Signal Frequency (Hz)

Things to note:

We are still 3 orders of magntide
from our godal

But we have an understanding of
the current limiting noise source
and how to tackle it
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Suptracting Current Noise Floor

Measuring the offset induced into our control loops

for ~Nxfy

- Measure the relative phase of the beat notes at input PDi, transmitted PDt, and reflected PDr

ODNOtoaetectors

- Concept: Superi

and subtract it |

mpose the diffe

rential phase measurements to extract the technical noise

N POSt processin

g
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Subtracting Current Noise Floor AL

10-11 F T Illlllll T llllllll T lllllll' L '||||||| ! 'l"||'| ' ""”'! 1 ""'l'l
BER o S Two field :
N Superposition of nosie |
3 Two field - Noise
10"‘12 - —

-

o
i
w
|

-

o
<A
BN
|

. Blue: Two field beat note
measurement

Differential Cavity Length (m/rt(Hz)
o

- Orange: Superposition describing our

nolise 10716 £ E
. . 2-field measurement with L CEEE B R
noise subtraction 107 107 1072 107" 10° 10’ 10° 103 10*

Signal Frequency (Hz)



Subtracting Current Noise Floor AL

Next:

10" _
T Two field :
N Super.position-of nosie | -
o Bettermg Qur superposItion of the noise . | W0 nexd ~iioiae
10° -
- Doing this with 3 fields )
% 107" =
£ :
[s)
S . jl
el
> 101 | :
2 | :
3 i
C . e gl
§10‘15 "‘i" ! i i
a . jaseey e
10710 2
10-17 L L O 0 R AR i i o i Ll T,
107 107 1072 107" 10° 10’ 10° 103 10*

Signal Frequency (Hz)



Comiments on noise suppression

Multi-faceted approach:

- The control noise we are experiencing is a well studied phenomenon

Meaning, we have options

There are different sources & solutions:

- Source: Birefringence in the optics coupling to amplitude noise (RAM) in our locking system

-Solution: control loops feeding back to EOM’s used for frequency stabilization for
active feedback of noise

- Source: Scattered light on the optical table

-Solution: Alignment adjustments, baffles in vacuum system etc
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For a hypothetical particle search:

- How they couple to our experiment:

 Mini Charged Particle’s:

- Expected to modity the relative scaling
of the VMB amplitude

- Measuring VMB with ALPSII will
constrain the MCP parameter space

52



For a hypothetical particle search:

- How they couple to our experiment:

 Mini Charged Particle’s:

- Expected to modity the relative scaling
of the VMB amplitude

- Measuring VMB with ALPSII will
constrain the MCP parameter space

 Axion Like Particles:
. Couple to laser and magnetic field
- Lead to a differential absorption in

circulating field propagating through
the cavity

53



Cavity Absorption Measurements:

JIN_J \

3| LI L2 Maagnetic field
Z |(ppo)  (p-pob) J o L
2 ». | : (p pol) (p-pol)
O
- |
2
i =
y frequency cEc
” A
L3 L4 i
(s-pol) (s-pol) (s-pol) (s—pol) frequency

- An absorption of light due to BSM particles would appear as an cavity loss - changing the HWHM of cavity
ine width >



Al
/ \i

ALPS Il (in HERA North)

VMB search in ALPS I
Upgrade of magnet power supply I fractructure

ALPS Il reaches full sensitivity, upgrades Commlssmzlr_mgsv:\lllB optics at

27 2028 2029
. C L Test various cavi
Optlrplze birefringence read-out birefringence suppresgion /
using frequency metrology control techniques

19 meter Birefringence Lab (in HERA West)
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Measurement Technigques

Static Birelringence Measurement

ESR T Abiref 30 L
i & 20 |
= f 5 / / \ NAVAVAUAUAY.
= - INAYAYAIA INAYAAY
= 2
S = 0! 5f- |
Model
2.47 x 10* 2.48 >< 104 2.49 >< 10 2.50 x 10*
I1 1) Time (s)
(p_pol) (S_pgl) (a) Oscillations in 6 f— while rotating HWP

Here: Abf — SHZ

58



Cavity Birefringence Noise
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Figure: projection of ALPS signal and cavity BF noise

Credits: Todd Kozlowski 59



[ntroduction

How does quantum electrodynamics manifest?

Delbruck Scattering: \

Scattering of photons in the Coulomb field of nuclei via
virtual electron-positron pairs

First observation was achieved in a high-energy, small

angle photon scattering experiment carried out at DESY
N 1973

Others
- Muon g-2 experiment

« Lamb shift

« Casimir shift
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Suptracting Current Noise Floor

- QOut of loop noise couples to the offset
of the error signals used to lock the
individual fields

. frequency
. Leads to relative frequency noise with .

respect to the cavity resonance

- Sources:

. Residual amplitude modulation

. Scattered light

amplitude

frequency

61
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Cavity Absorption measurements

- Maybe a mild mention of how we plan to measure things that Felix talked abt: axion DM
searches, mini charged particles

were lock to the HWE

ONYSICS

M of the

changes in the cavity losses w

resondance d

Nich we can

IS

a

e

e

N CN

to di

- A similar measurement scheme, but instead locking to the center of the cavity resonance

Na T

anges in frequency are related to
fferential absorption to dark sector
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Cavity Birelringence Measurements

. Static and dynamic birefringence measurements

- What we do, results

» Projections of what we expect on 20m cavity

- Ment

the p

on that reaching this level is actually our goal for

ototype
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Measuring VM.

Generating VMB:

Measuring VMB:

Interferometric:

An

vmb —

VMB
|

L

VMB ~, 396 x 107%* x B

Magnetic field

ARRNNAR

|

Magnetic field

|

4l —NXVFSRH = N X —

v, = N X vpgr,1 = N X

2

—>

2L||

2LL

frequency (v)
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