

Automation Status and Plans – Accelerator Side

Frank Mayet – DESY/MXL
For the operation and software teams

HELMHOLTZ

Operation Workshop 2025
November 13th, 2025

HLC and MXL Power the Software Behind EuXFEL Operations at DESY

■ HLC (High Level Controls) team

- A group of physicists and software developers from various groups in the M-division at DESY
- The backbone of the XFEL operations software as well as the majority of the servers and tools come from this group
- Hosts a bi-weekly meetings to discuss ongoing work as well as requests concerning accelerator operations
- Provides guidelines for software development concerning accelerator operation at DESY
- Most colleagues from the HLC-group are also involved in software projects not related to EuXFEL

■ MXL group software team

- These colleagues work exclusively for EuXFEL
- Currently one fulltime software developer and one staff scientist (automation / ML/AI deployment)
- Several scientists working on tools and scripts for operation. Partially on final operation versions, partially on test versions that are then handed over to software developers

More Automation Benefits Machine Operation

■ Reduce complexity for the operations team

- Parallel operation of three beamlines; weekly changing requirements / regular parameter changes
- LLM-based tools, smart operation panels, and logbook enhancements

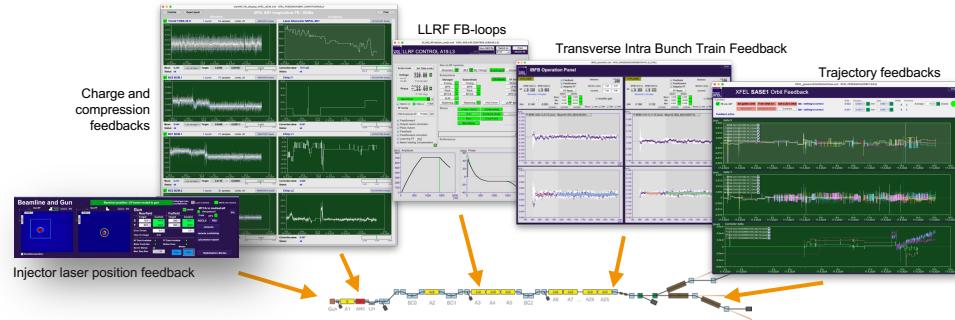
■ Reduce dependence on experts

- Much of the expert knowledge can be provided by / modelled in software tools
- LLM-assisted knowledge retrieval

■ Ensure consistently high performance (intensity and stability)

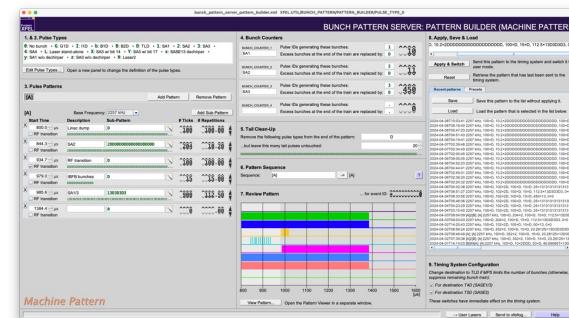
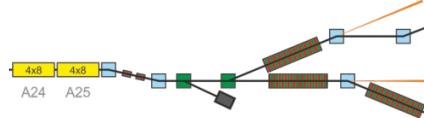
- Standardized software procedures benefit reproducibility
- ML-based anomaly detection and virtual diagnostics (shot-to-shot monitoring of virtual FOMs)

■ Reduce downtimes after failures

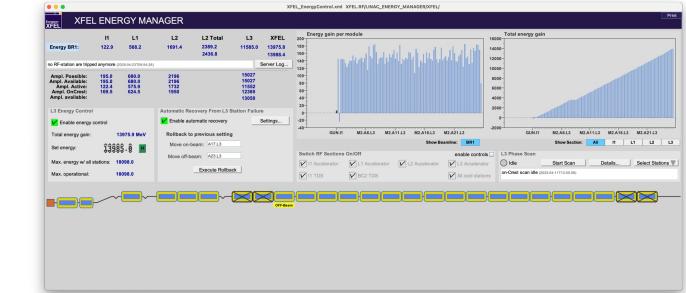

- The sequence of recovery steps can be optimized such that the resulting downtime is as short as possible
- Automated, standardized setup / optimization procedures

■ Explore new operation modes

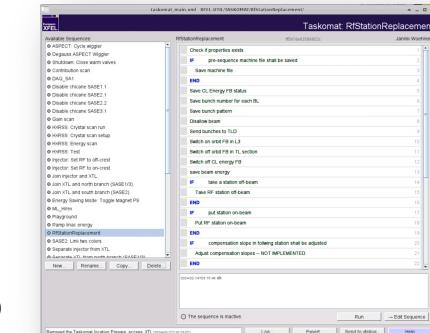
- Leveraging machine learning based optimization, as well as virtual diagnostics and surrogate models



Mature Automation Tools drive Daily Operation

Feedback loops

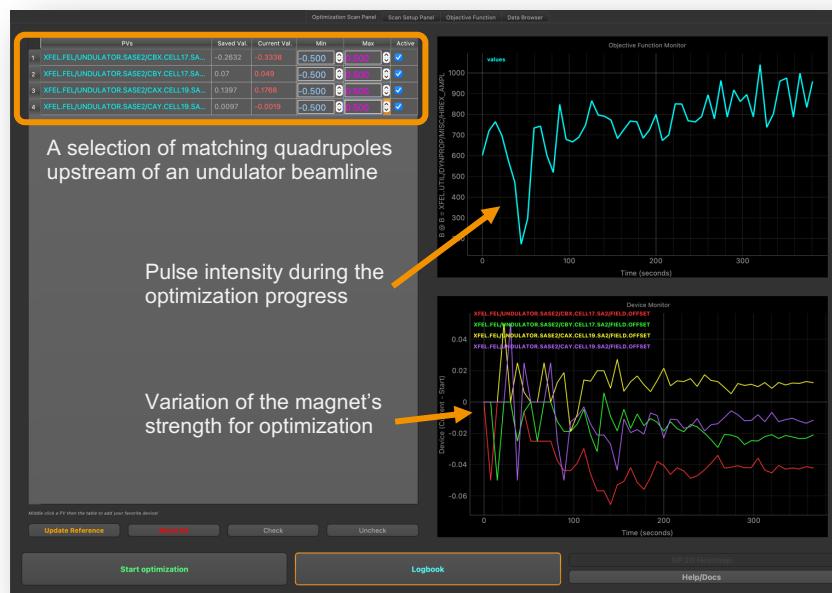

■ Bunch Pattern Builder

- Highly customized bunch patterns for all three beamlines


Finite State Machine and Energy Manager

- Automatic RF station recovery
- Automatic RF and magnet parameter scaling
- Spare station handling and parasitic on-crest phase measurements

Taskomat


- Powerful generic sequencer implemented as a server
- Very easy to use and to develop new sequences using LUA
- Not only serial procedures, but also more exotic (coupling of two colors, etc..)

Mature Automation Tools drive Daily Operation

Ocelot Optimizer

- Drag and drop DOOCS properties for actuators and monitors
- Many presets are available for standard tuning
- Optimization routines can be freely programmed via Python and started e.g. for dispersion minimization

Many more...

- Emittance measurement and beam optics matching
- Parasitic longitudinal phase space characterization
- Photon energy change
- Phase shifter scans
- Etc.

Software Developments in Service of Automation

doocs4py

- Python bindings to the C++ DOOCS server and client libraries
- Feature complete DOOCS servers written in Python
- Speeds up transfer of (mostly Python-based) ML/AI projects into operation
- Easy conversion of Python GUI tools into servers
- Install via pip

A complete DOOCS server written with doocs4py

```
1  #!/usr/bin/env python
2  from doocs4py import Server, Location, location_class
3  from doocs4py.utils import print_to_stderr
4  from doocs4py.properties import PropertyFloat, PropertyText
5
6  @location_class(42)
7  class ServerLocation(Location): #EqFct
8      def __init__(self):
9          super(ServerLocation, self).__init__("NAME")
10
11     # float property
12     self.float_prop = PropertyFloat(self, "FLOAT")
13
14     # text property
15     self.text_prop = PropertyText(self, "TEXT")
16
17     print_to_stderr(self.get_name(), message="ServerLocation constructor")
18
19     def init(self):
20         print_to_stderr(self.get_name(), message="ServerLocation.init()")
21
22     def update(self):
23         print_to_stderr(self.get_name(), message="ServerLocation.update()")
24
25
26     server = Server("simple_server")
27     server.register_location_class(ServerLocation)
28     server.run()
```

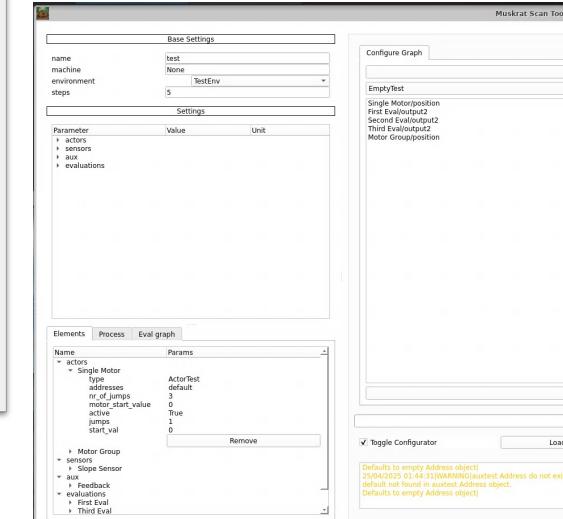
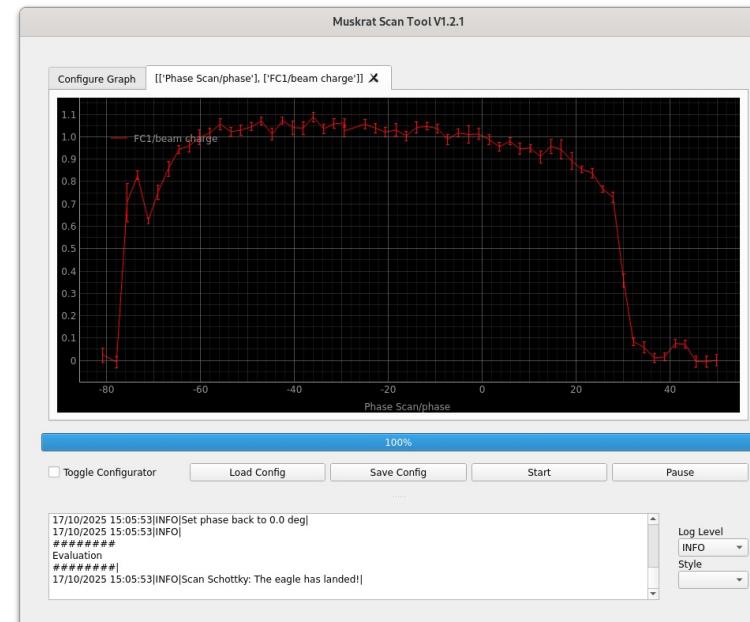
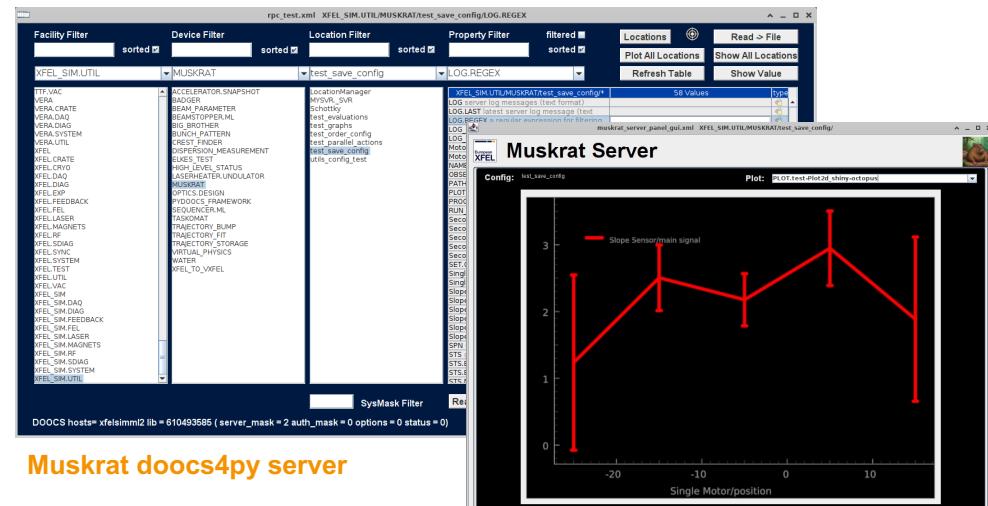
Software Developments in Service of Automation

Example: Badger Server

DOOCS server implementation of the Python-based Badger Optimizer 1.4.3

- Uses doocs4py
- Runs pre-defined optimization routines, which are created using the Badger GUI
- Exposes key scan parameters and control properties to the control system
- Can be controlled via a standard control room panel, or from other servers/tools
- Ocelot optimizer still relevant for ad-hoc optimization
- Will also be able to run RL agents in the future

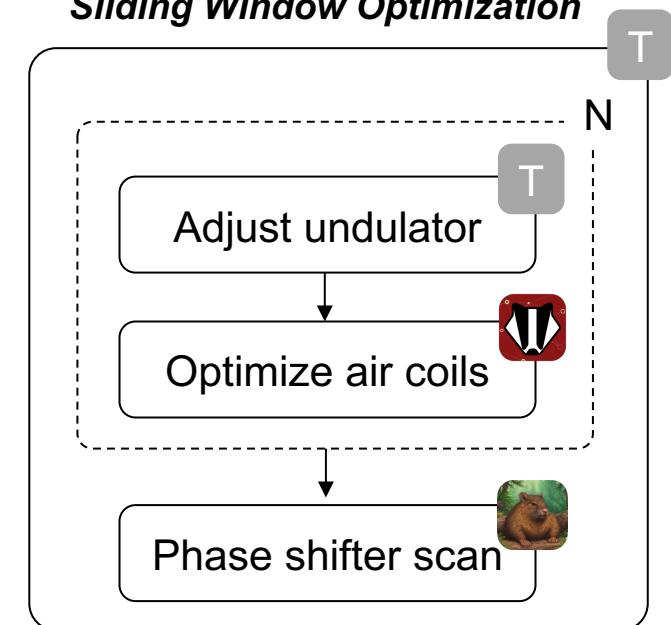
In collaboration with **SLAC**




Software Developments in Service of Automation

Example: Muskrat Scan Tool

Powerful parameter scan tool developed in Python

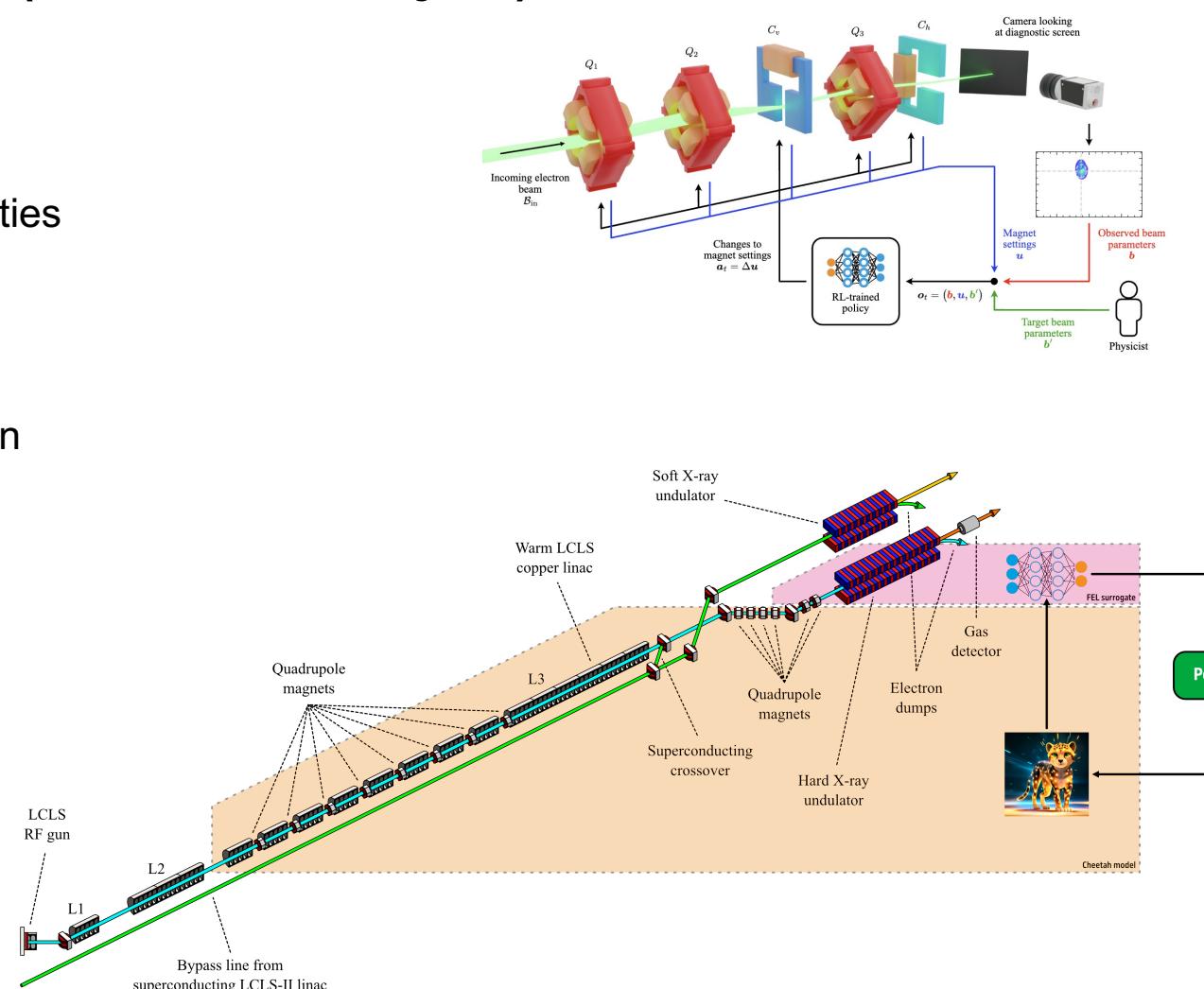
- Create complex presets, which can replace existing single-purpose scan tools
 - ▶ ...using the Python GUI
 - ▶ ...by directly writing a .yaml file
- Also available as a server via doocs4py
- Workflow analogous to the Badger Server
 - ▶ GUI and server use the same *engine* and *preset data base*
- Replacing single purpose tools with Muskrat presets improves maintainability and makes the procedures available to other servers/tools
- Run scans via GUI, command line, or DOOCS


Software Developments in Service of Automation

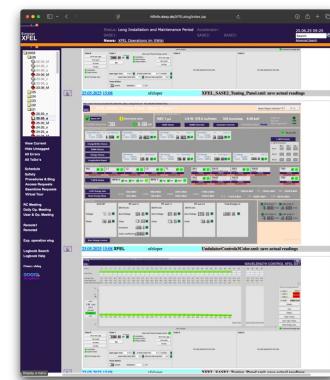
Example: Combining tools to tackle complex optimization scenarios (work in progress)

- **Combination of**
 - Taskomat → Arbitrary control scripts
 - Badger Server → Optimization algorithms (xopt)
 - Muskrat Server → Parameter scans
- Enables automation of time-consuming, complex optimization tasks
 - Extremely flexible
- Visualization is key
 - Possible e.g. using server-defined control room panels
- Everything is server-based
 - Laying the groundwork for tool calling agents
 - Toolbox for RL, or LLM-based orchestrators

**Automatic Tuning of different Undulator Sections:
*Sliding Window Optimization***

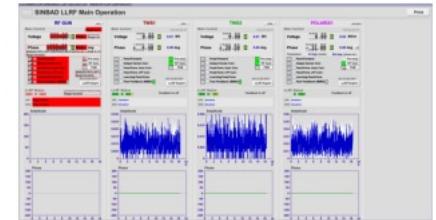

Reinforcement Learning for FEL Tuning (XFEL R&D Project)

■ Status

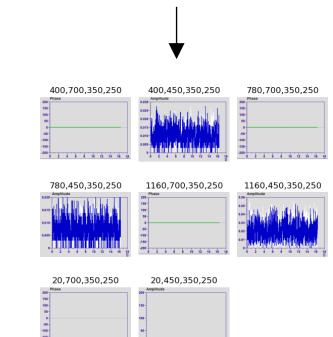

- RL-based tuning methods developed at other facilities
 - ▶ Transverse beam parameter tuning at ARES
 - ▶ FEL intensity tuning at LCLS
- Extensive performance investigations
 - ▶ Outperforms alternative algorithms like Bayesian Optimization (BO) in speed and result
 - ▶ Achieves comparable working points to expert human operators significantly faster

■ Next steps

- Transfer to EuXFEL
- Hierarchical approach combining tuning methods towards more automated operation



Enhancing Existing Tools



Use logbook metadata to restore panel settings
Panel layout generated by the server

Easily extract plots from panel screenshots for further analysis


```
entry = LogbookEntry.from_url(url)
entry.load_image()
plots = entry.get_jddd_panel_plot_images()
```


LLM-based logbook search
benefits from metadata

DESY.

■ **jddd** → GUIs for accessing control system servers

- Server defined panel components
- Panel metadata for better documentation
 - ▶ Static data: Author, Description, Purpose, Plot bounding boxes, etc.
 - ▶ Dynamic data: Widget data, Usage history

eLog

- Image metadata (automatic for jddd panels)
- LLM-based documentation suggestions (work in progress)
 - ▶ Automatic enhancement of metadata with LLM-based plot descriptions

Enhancing Existing Tools

New DOOCSkarabolib

- Ready for KARABO 3
- Based on experience from the existing KARABO bridges and the HIREX Data ML server
- Simplifies interfacing with KARABO within DOOCS servers
- Used by the new versions of the KARABO bridges, as well as the HIREX Data and Control ML servers

DOOCSSkarabolib

Name	Last commit	Last update
debian	for DOOCS release 25.10.0	3 weeks ago
include	Implement getAs and getAsAny ...	3 weeks ago
src	Add missing getRegisteredChan...	3 weeks ago
tests	little more testing...	3 weeks ago
tools	add two blank line outputs	3 weeks ago
.gitignore	add some common files	1 month ago
.gitlab-ci.yml	disable CI	3 weeks ago
CHANGELOG.md	add CHANGELOG.md	1 month ago
ENVIRONMENT	add karaboDependencies to .pc ...	1 month ago
LIBNO	for DOOCS release 25.10.0	3 weeks ago
LICENSE.txt	add some common files	1 month ago
README.md	add basic things for scan* tool	3 weeks ago
meson.build	add basic things for scan* tool	3 weeks ago

Project information

This library provides support for interfacing the Karabo Control System Layer via the Karabo DeviceClient interface.

DOOCSSkarabolib

39 Commits

2 Branches

0 Tags

5.1 MiB Project Storage

README

GNU GPLv2.1

CHANGELOG

CI/CD configuration

Add CONTRIBUTING

Add Kubernetes cluster

Add Wiki

Configure Integrations

Created on

September 21, 2025

DOOCSSkarabo library

A wrapper library for the XFEL GmbH Karabo control system

- DOOCSSkarabo library
 - Clone this repository
 - Build this DOOCSSkarabo library

Display a menu

Automation Plans

■ e-beam based undulator alignment → Sliding window optimization

- Time consuming procedure during initial setup of a working point
- Has proven to be useful if performed correctly
- Combination of Taskomat (undulator setup), Badger (aircoil optimization), Muskrat (phase shifters)

■ Photon beam pointing correction using quad movers and K-mono

- Cell-by-cell procedure, which is tedious by hand
- Planned automation builds on manual safe setup of K-mono and undulator line
- Expert procedure

■ Enhanced phase shifter scan using two devices at the same time

■ On-crest phase setup

Automation (and other) Plans

■ **Muskrat presets**

- Implementation of Tuesday e-beam characterization procedures → Run via server
 - ▶ Example: Fast QE map
- Fast gain curve (was actually the starting point for Muskrat)

■ **Streamlining of existing tools**

- Example: Move the adaptive orbit feedback from the Ocelot GUI to the DOOCS feedback server

■ **In collaboration with the photon side: HIREX setup automation**

- HIREX Control ML DOOCS server
 - ▶ Calls safe KARABO MDLs

Agentic AI – The Future?

- **Current AI work mostly focused on knowledge retrieval (eLog, Xwiki, Procedures, etc.)**
 - Implementation of knowledge retrieval tools as Model Context Protocol (MCP) servers / tools
 - Benefits a lot from e.g. logbook metadata
- **Automation tools shown before organize setup / optimization / beam characterization tasks into high level blocks, which lend themselves to be called (or suggested) by agentic systems**
 - Reduce complexity and ensure safety!
- **Close collaboration with Berkeley Lab → Osprey Framework** <https://github.com/als-apg/osprey>
 - Framework for agentic AI systems
 - Plan-first orchestration with human oversight (in contrast to simple ReAct agents studied before)
 - Feasibility to be evaluated – First tests first using our knowledge retrieval MCP servers (harmless)

F. Mayet, *Building an intelligent accelerator operations assistant using advanced prompt engineering techniques and a high-level control system toolkit*, LIPS Symposium, Feb. 2024

F. Mayet, *GAIA: A general ai assistant for intelligent accelerator operations*, arXiv:2405.01359, May 2024.

A. Sulc et al., *Towards Agentic AI on Particle Accelerators*, arXiv:2409.06336, September 2024

A. Sulc, et al., *Towards Unlocking Insights from Logbooks Using AI.*, Proc. IPAC'24, Nashville, USA

T. Hellert et al., *Osprey: A scalable framework for the orchestration of agentic systems*, arXiv:2508.15066v2, 2025

Summary

- We continue to tackle repetitive tasks with our mature automation tools
- Current software developments are in service of automation, ML/AI deployment, and maintainability
- The combination of Taskomat, Badger Server, and Muskrat enables us to combine individual stand-alone solutions into larger units, which are then available to be used by the operators or any other tools/servers

- Work on software infrastructure during LIMP
- Implementation and test of automation scenarios as much as possible when the machine is back

- Feasibility studies on agentic AI on-going

Thank you for your attention!