

CLUSTER OF EXCELLENCE
QUANTUM UNIVERSE

Gefördert durch:

Bundesministerium
für Forschung, Technologie
und Raumfahrt

Universität Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

New Dijet Anomaly Detection Search with Run3

**Jovin Drews, Louis Moureaux, Karim El Morabit, Gregor Kasieczka,
Chitrakshee Yede, Tore von Schwartz**

Exotica Jets+X Working Group Meeting

January 19, 2026

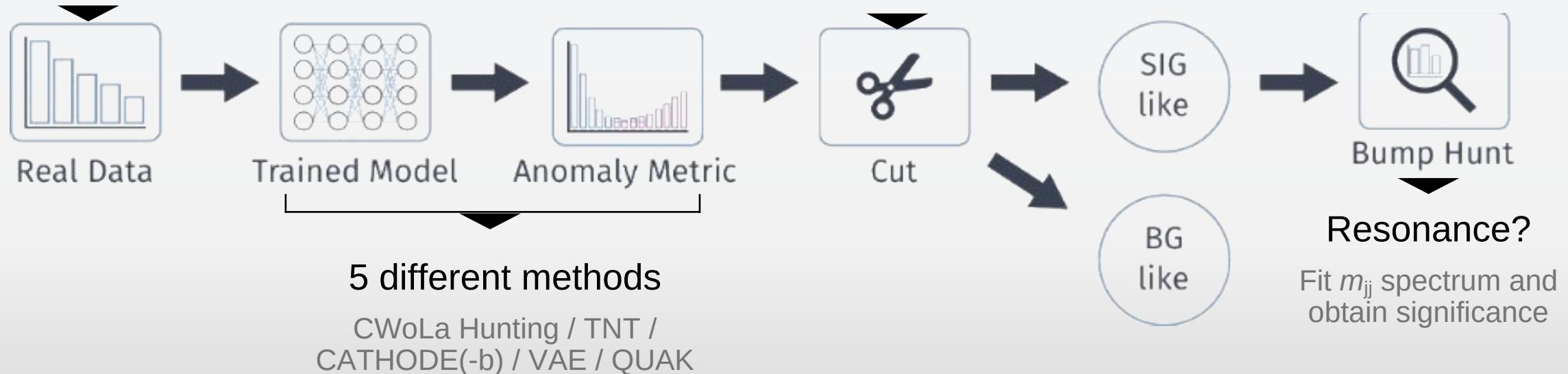
Anomaly Detection Introduction

- New physics may appear in unknown signatures that traditional analyses miss
- Identify rare or unexpected events without explicit signal model
- If a new particle is produced, it appears as a peak in a kinematic distribution
- Choose a variable where the signal could appear (e.g., invariant mass)
- Estimate the background distribution
- Look for deviations/peaks above the expected background
- ML models filters events to signal-like ones using additional features
- Careful selection of features that are sensitive to the phenomena of interest

Analysis Strategy

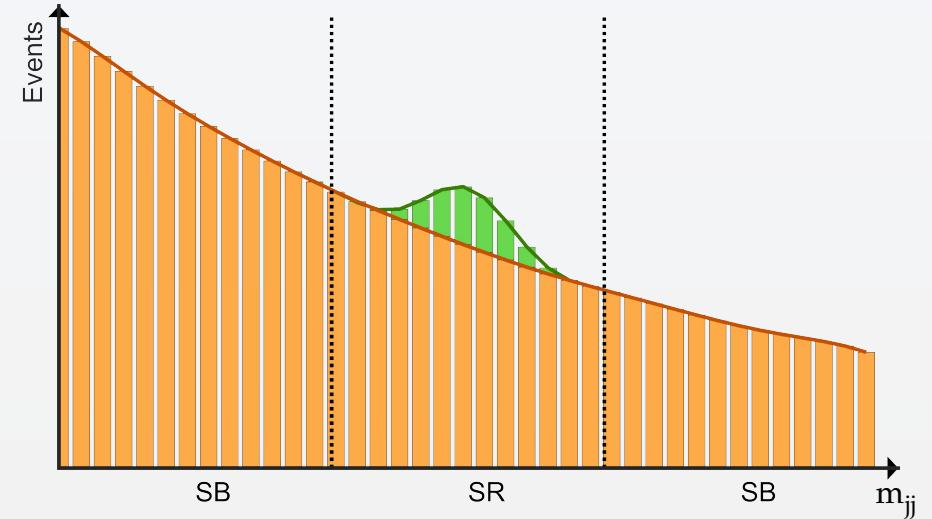
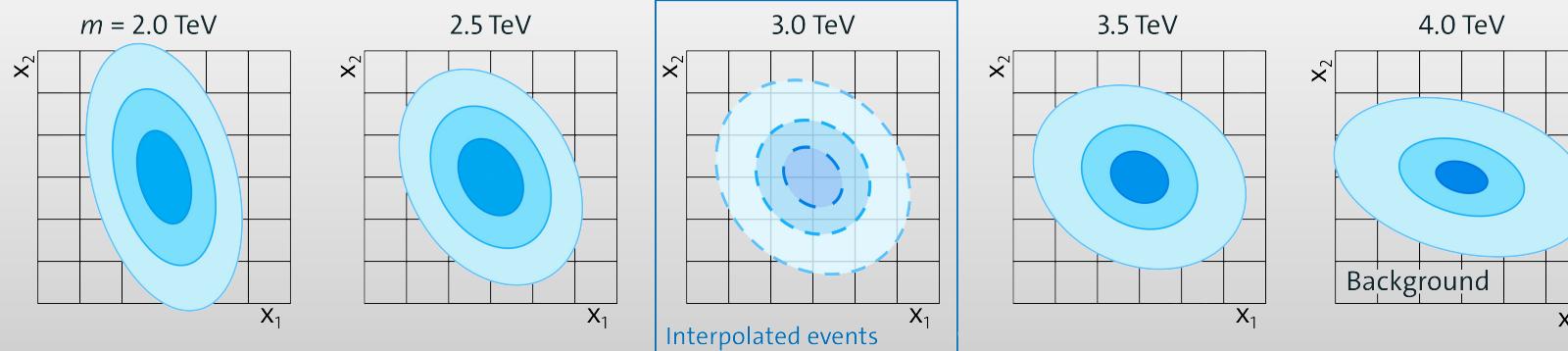
Start from data

Anti- k_T jets with $R = 0.8$
Basic selection criteria



CATHODE

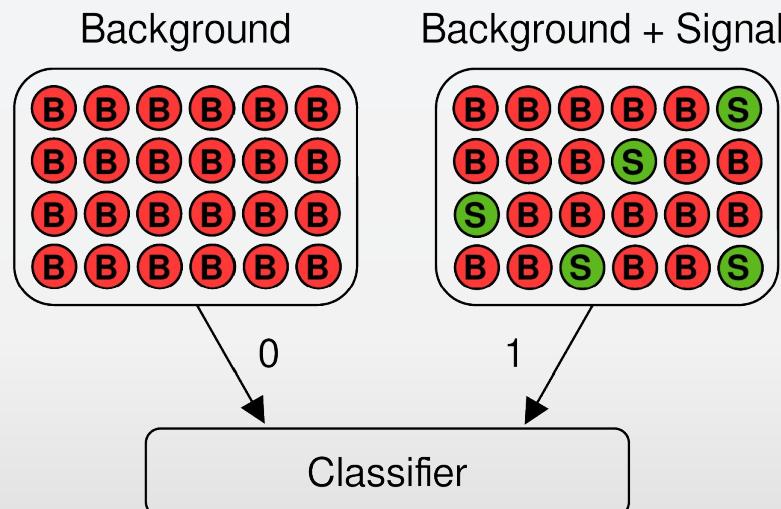
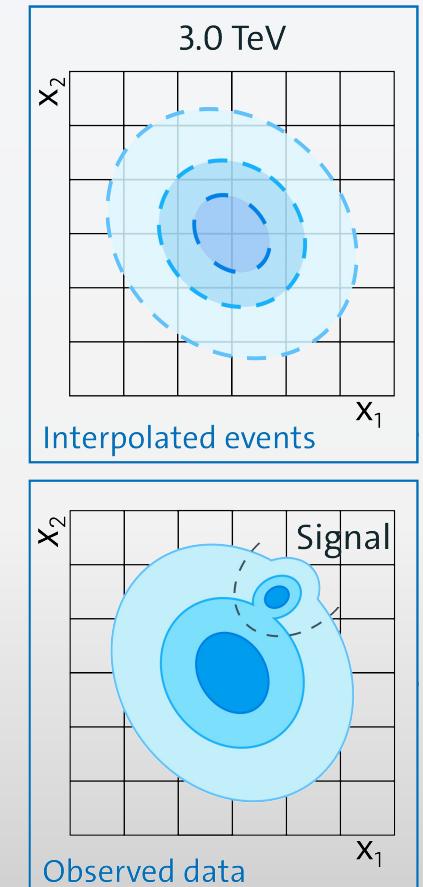
- Classifying Anomalies THrough Outer Density Estimation
- Select classification variables \mathbf{x}
- Define signal region (SR) on the dijet mass m_{jj}
- Train generative model on sidebands
- Learn conditional density $p(\mathbf{x}|m)$
- Generate new \mathbf{x} samples using m values in the SR



CATHODE

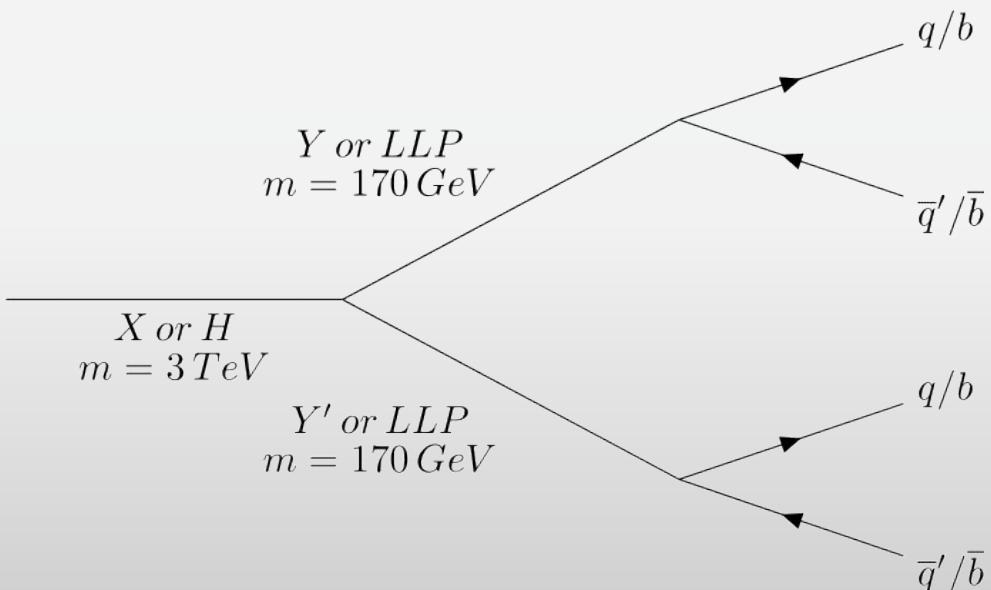
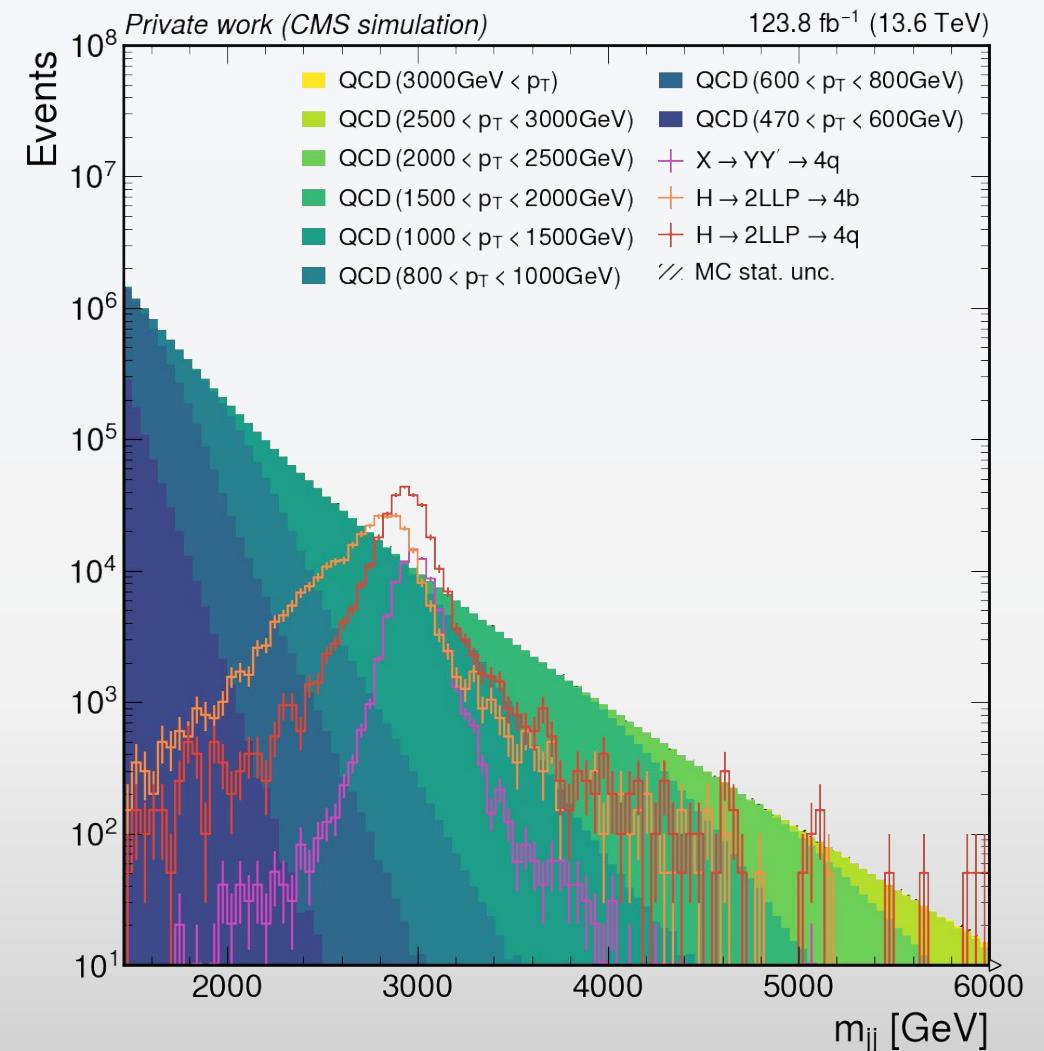
- Train a classifier between sampled bkg and data
- If there is signal it learns to classify it

$$R_{data}(x) = \frac{p_{data}(x)}{p_{bkg}(x)}$$
$$p_{data}(x) = (1 - \varepsilon)p_{bkg}(x) + \varepsilon p_{sig}(x)$$



Datasets

- Simulated events only right now
- Focusing on 2024 LHC conditions
- Background: QCD Pythia pT-binned
- Prompt and long-lived signals

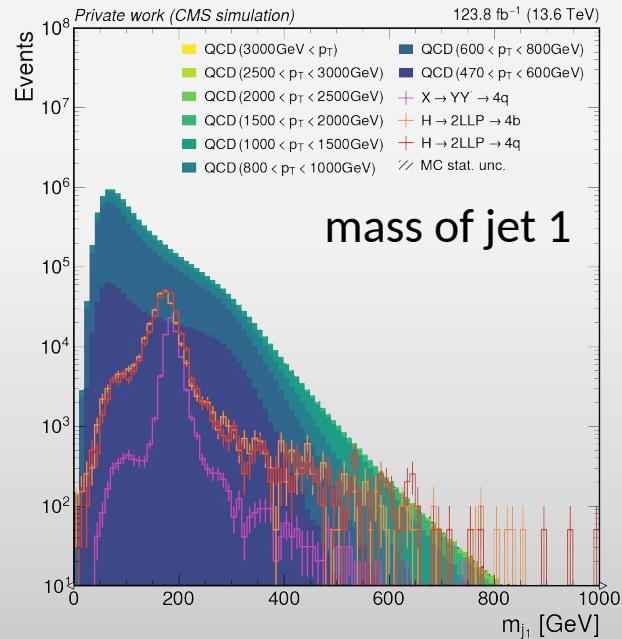
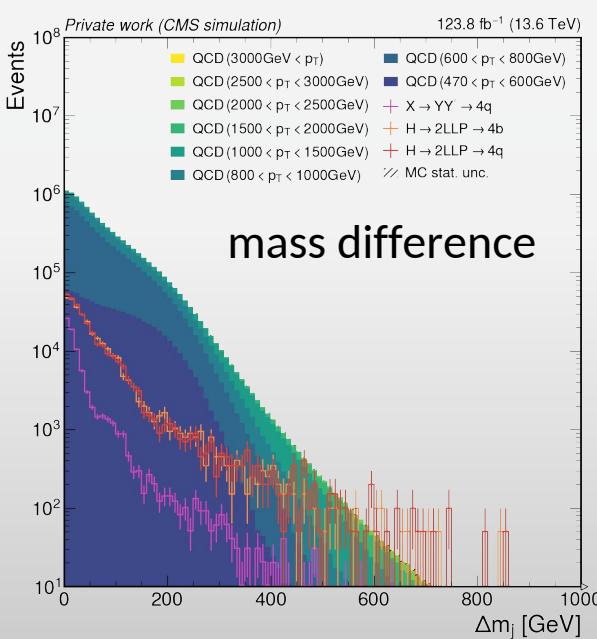
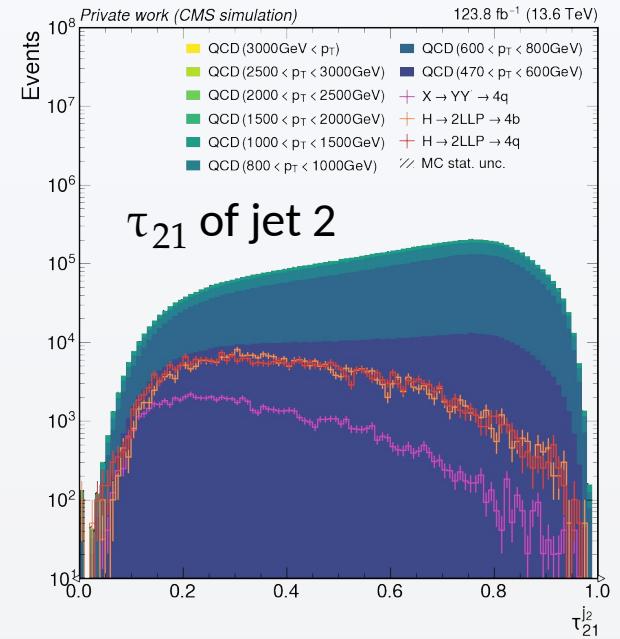
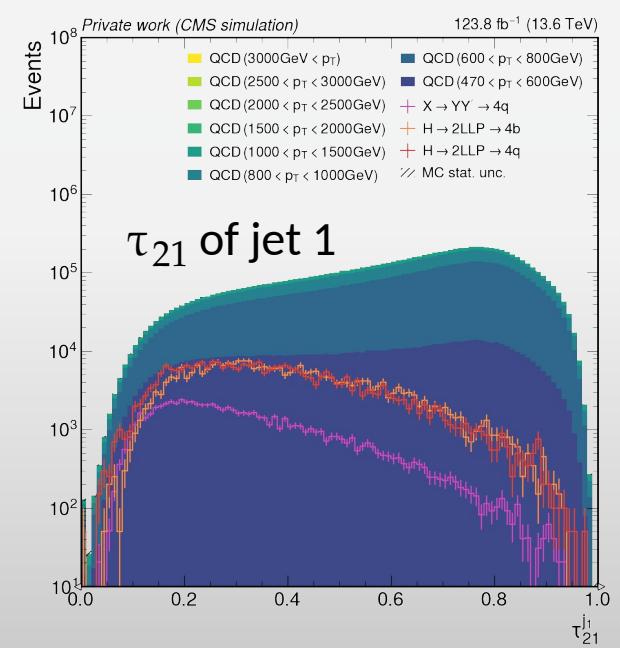


Basic Event Selection Criterion

- Same selection as CASE analysis
- Two Anti- k_T fat jets with highest p_T
- Only jets with $p_T > 300\text{GeV}$ and $|\eta| < 2.5$
- $|\eta_{j1} - \eta_{j2}| < 1.3$ and $m_{jj} > 1455\text{GeV}$
- One of the trigger HLT_PFHT1050 or HLT_AK8PFJet500
- Signal region is $2.7\text{TeV} < m_{jj} < 3.3\text{TeV}$

Baseline Features

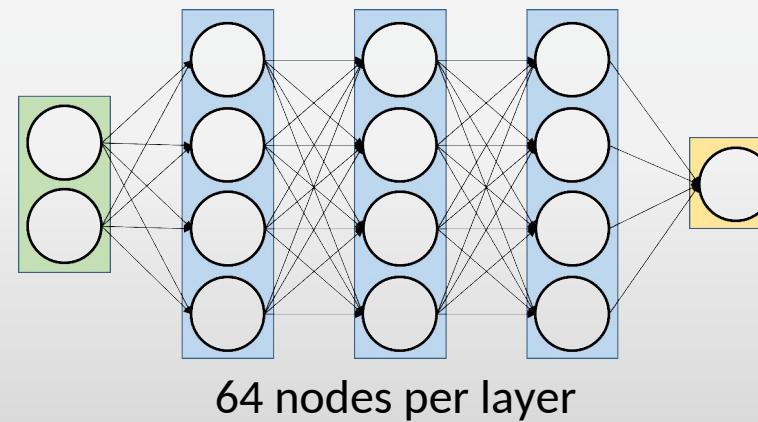
- Four features already used in previous studies
- Can be well predicted by the flow
- No special sensitivity for LLPs



Classifier Training

- Simple DNN model
- Used 1% signal in SR
- A total of 145k bkg events, corresponding to a luminosity of 124fb^{-1}
- Train, validation, and test sets are split 60 % / 20 % / 20 %
- Trained for 100 epochs
- Average over best 10 epochs

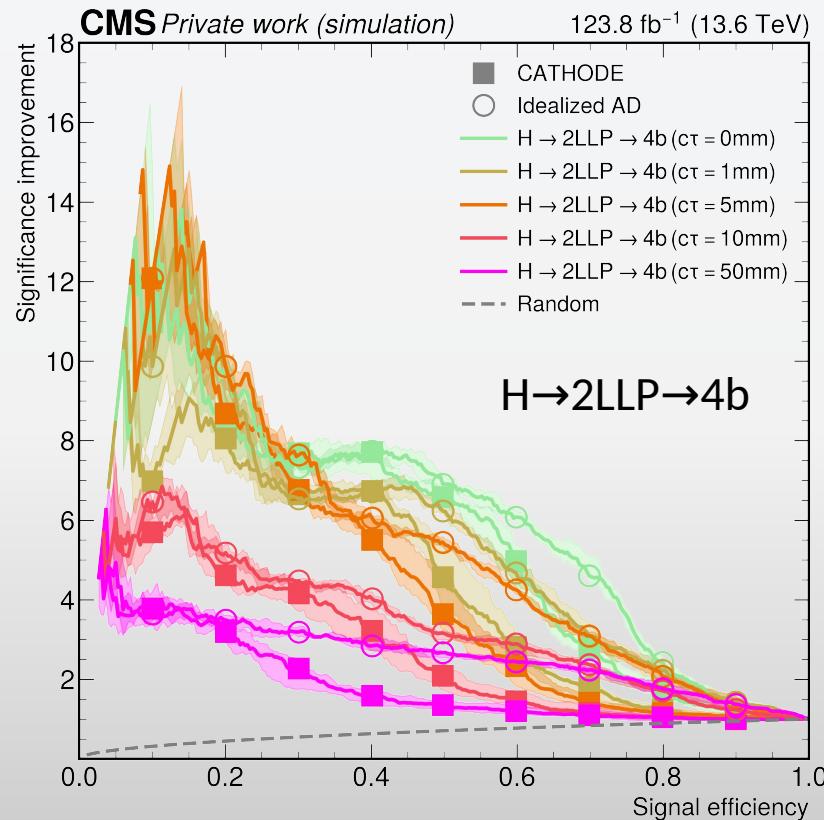
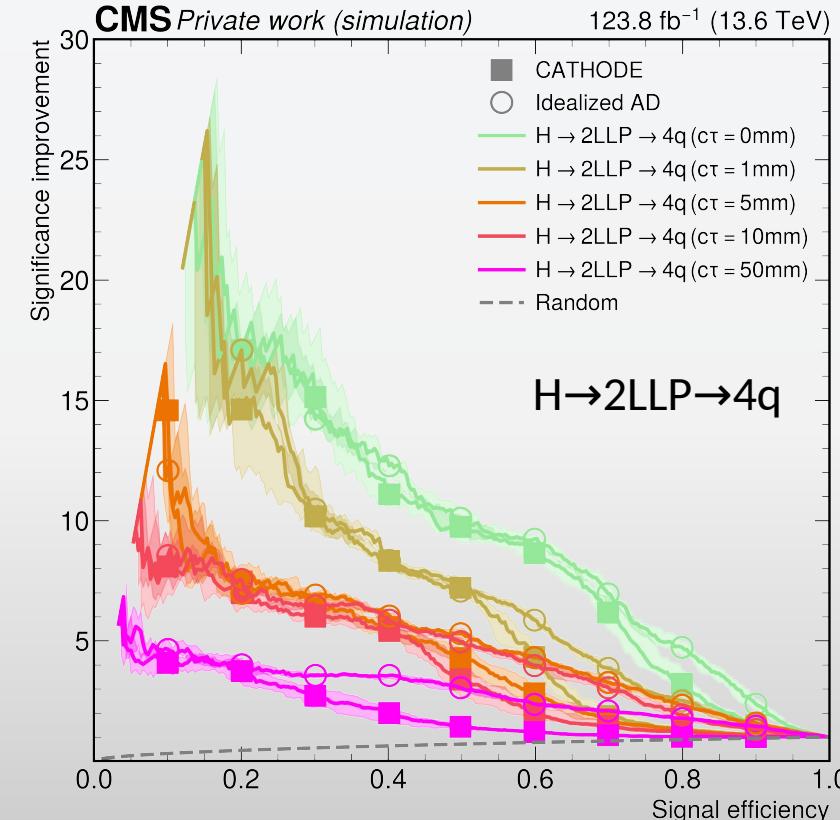
set	Class 0	Class 1
train	43.5k inter. bkg	43.5k bkg + 870 sig
val	14.5k inter. bkg	14.5k bkg + 290 sig
test	29k bkg	290 sig



Baseline Trainings

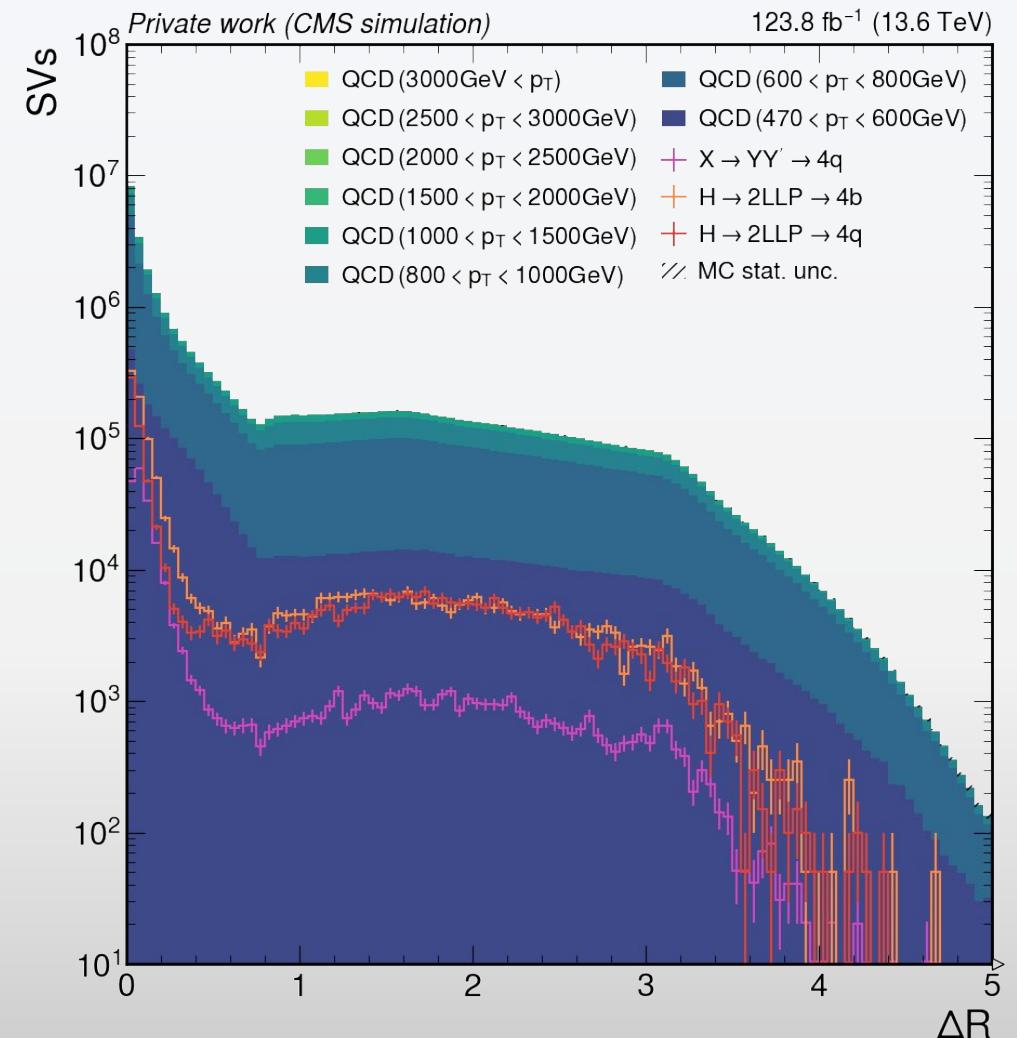
- Dropdown due to bad jet reconstruction

$$\text{SIC} = \frac{\varepsilon_S}{\sqrt{\varepsilon_B}}$$



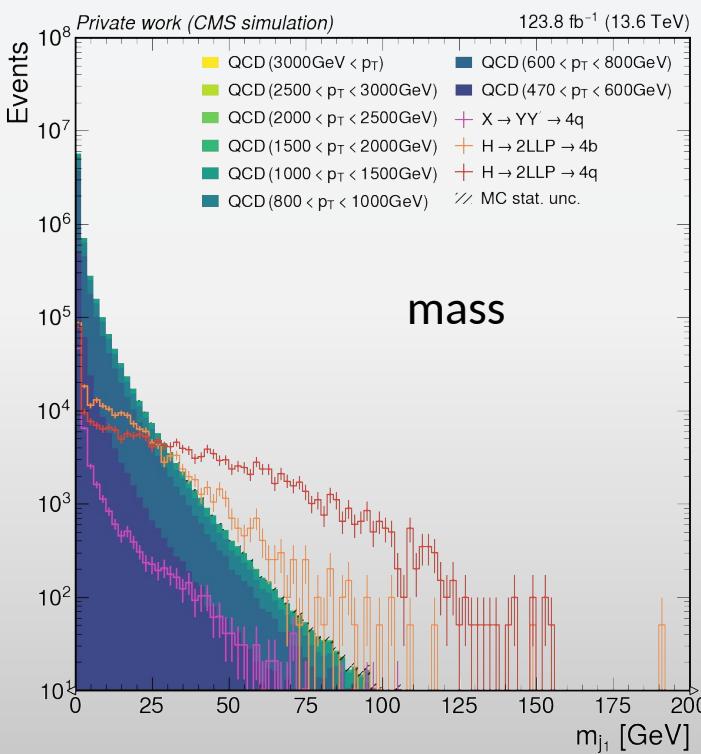
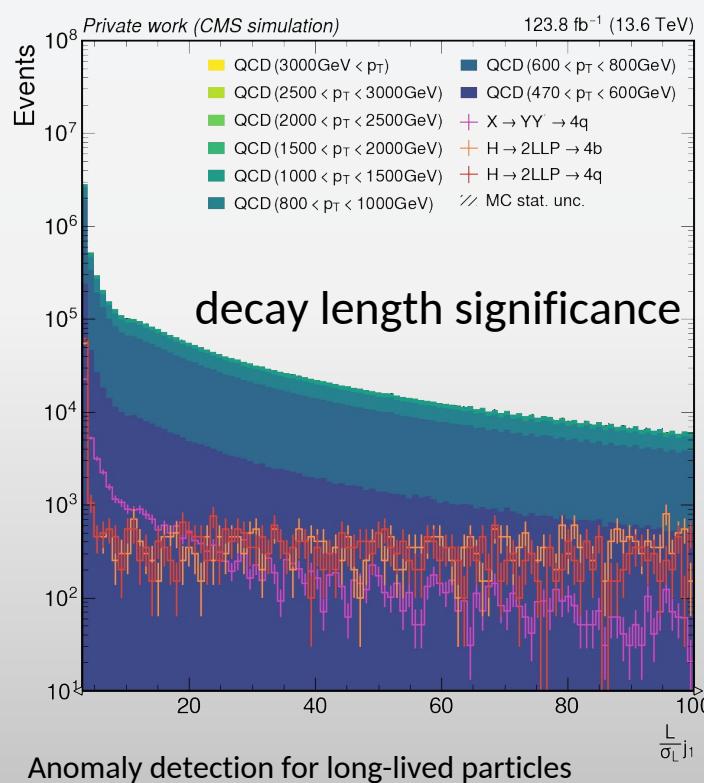
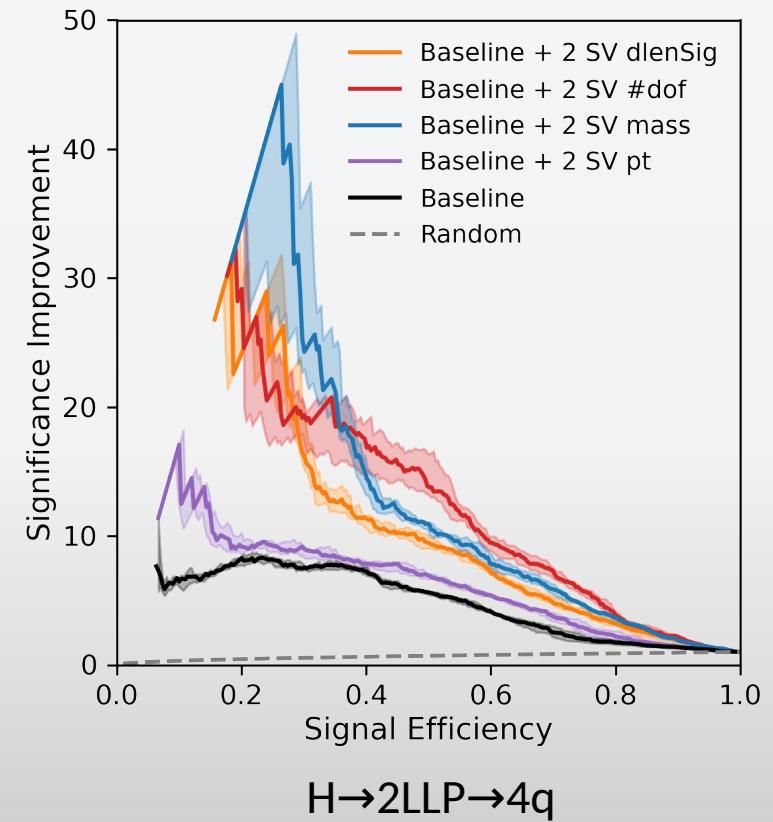
Secondary Vertex Criterion

- Use one secondary vertex (SV) per jet
- Require the distance $\Delta R(SV, \text{jet}) < 0.8$
- Select the SV with the highest L_{xy}/σ_L



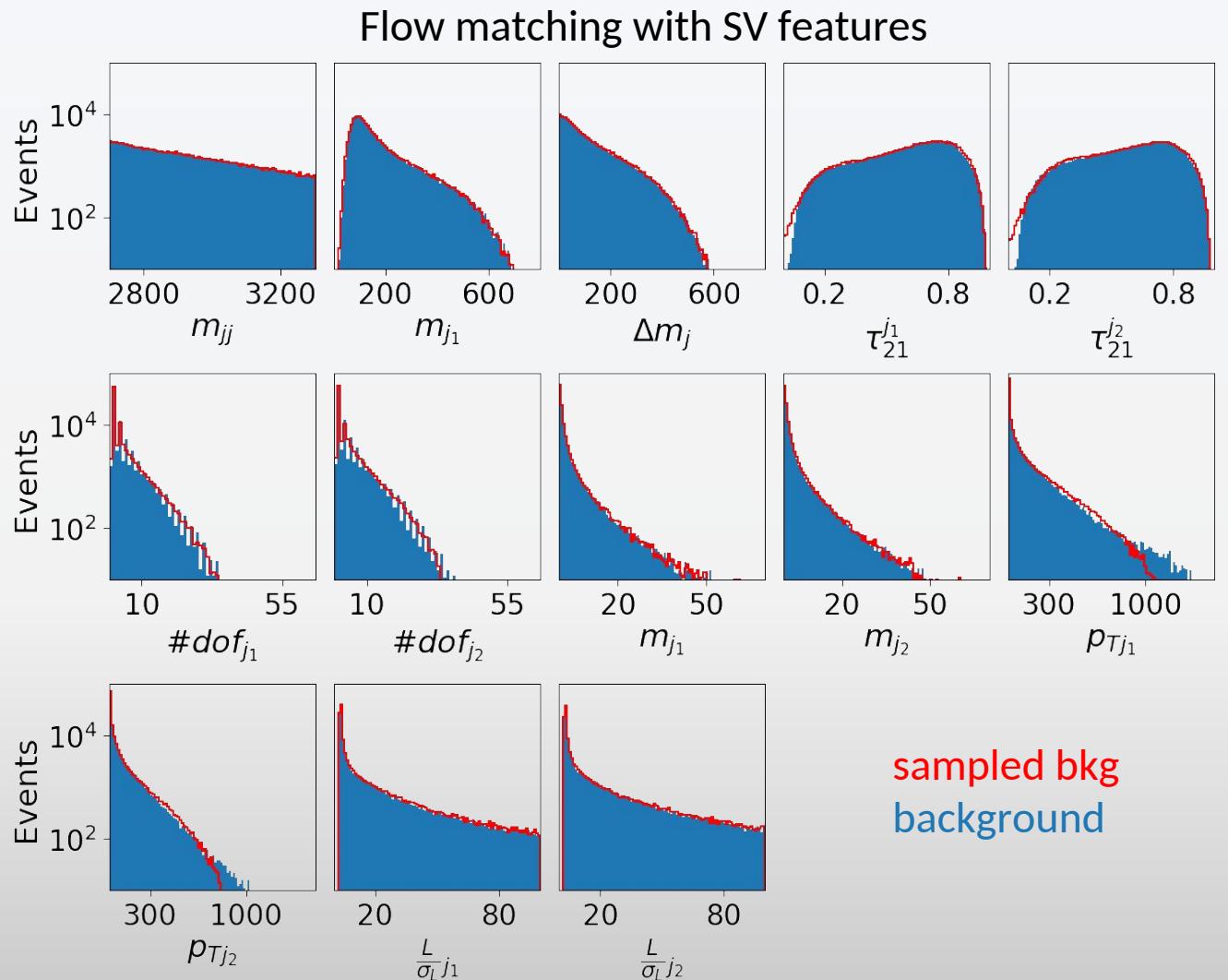
Selected SV Features

- Identified useful SV features by adding the SV features to baseline features
- Tested all SV features available in nanoAOD.
- Best combination with mass and decay length significance



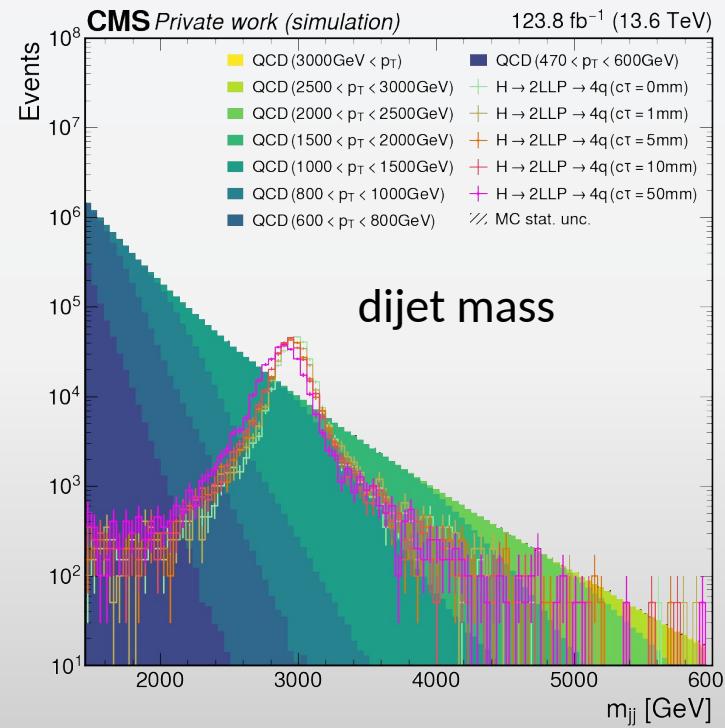
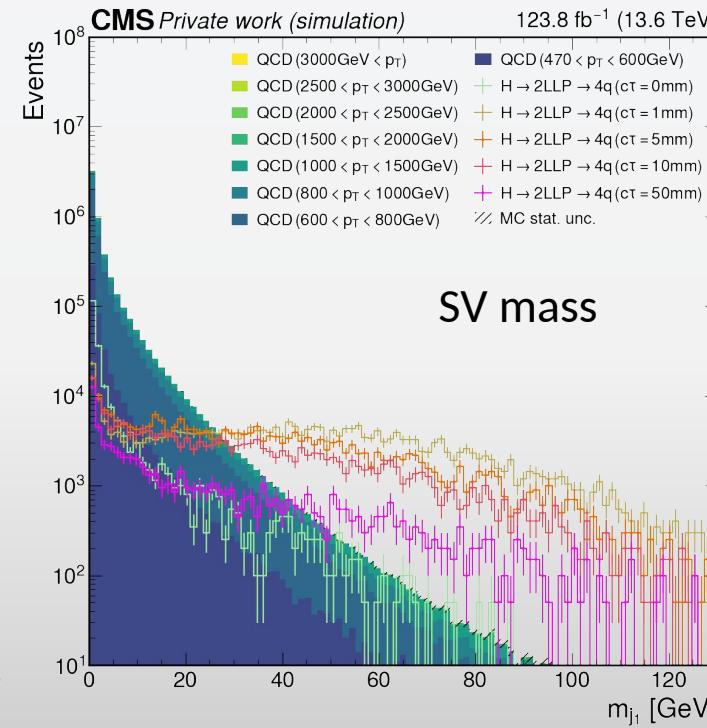
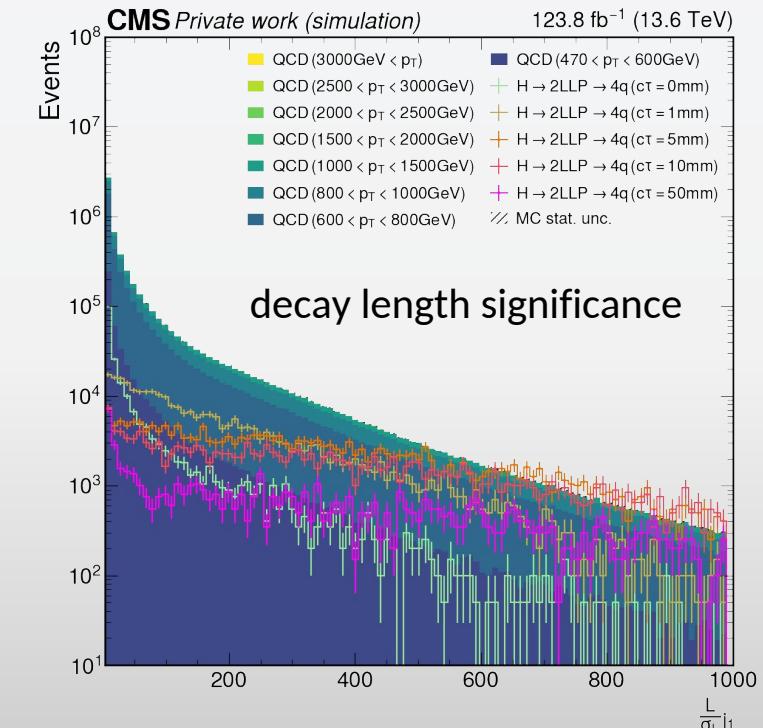
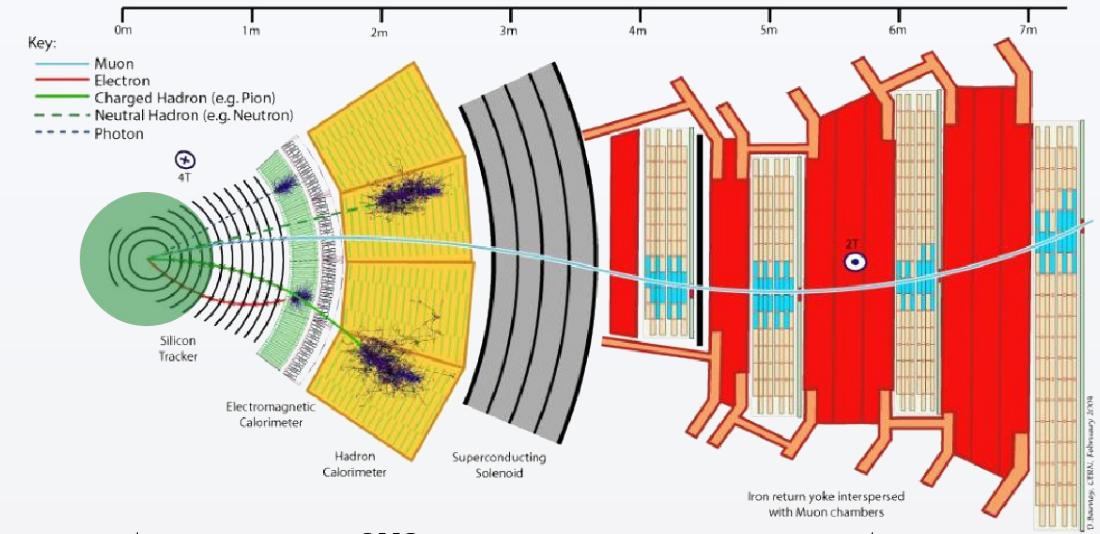
Background Interpolation

- Trained with 300k bkg and 100k for validation
- Sampled bkg equally from best 10 epochs
- Flow matching trained for 30k epochs
- Normalized Flow trained for 100 epochs



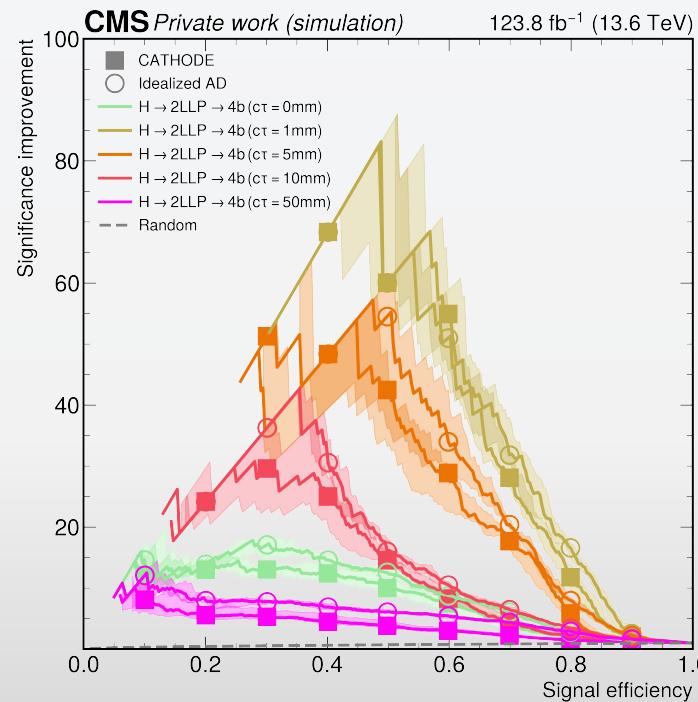
Different Lifetime

- Decay inside the tracker
- Changes in the lifetime lead to shifts across all features

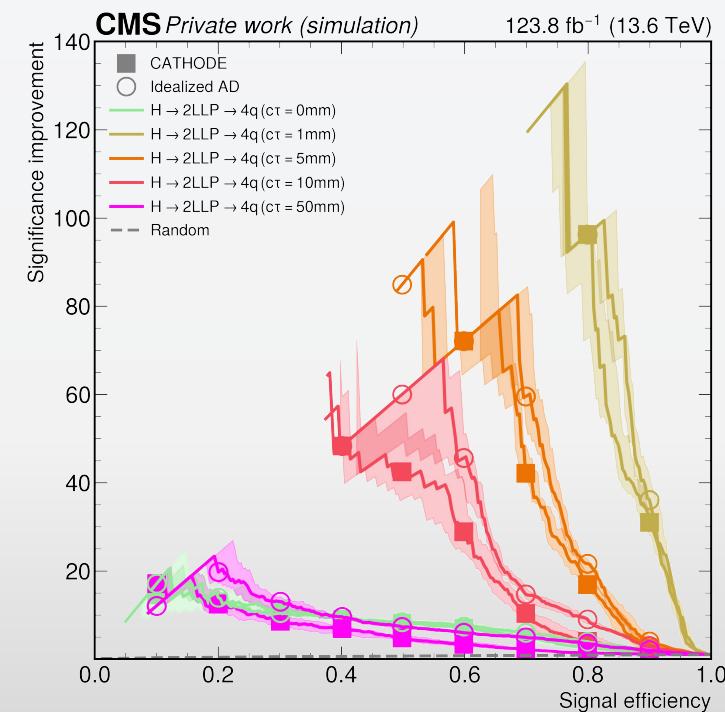


Trainings with SV Features

- Huge improvement for signals with medium $c\tau$



$H \rightarrow 2\text{LLP} \rightarrow 4b$



$H \rightarrow 2\text{LLP} \rightarrow 4q$

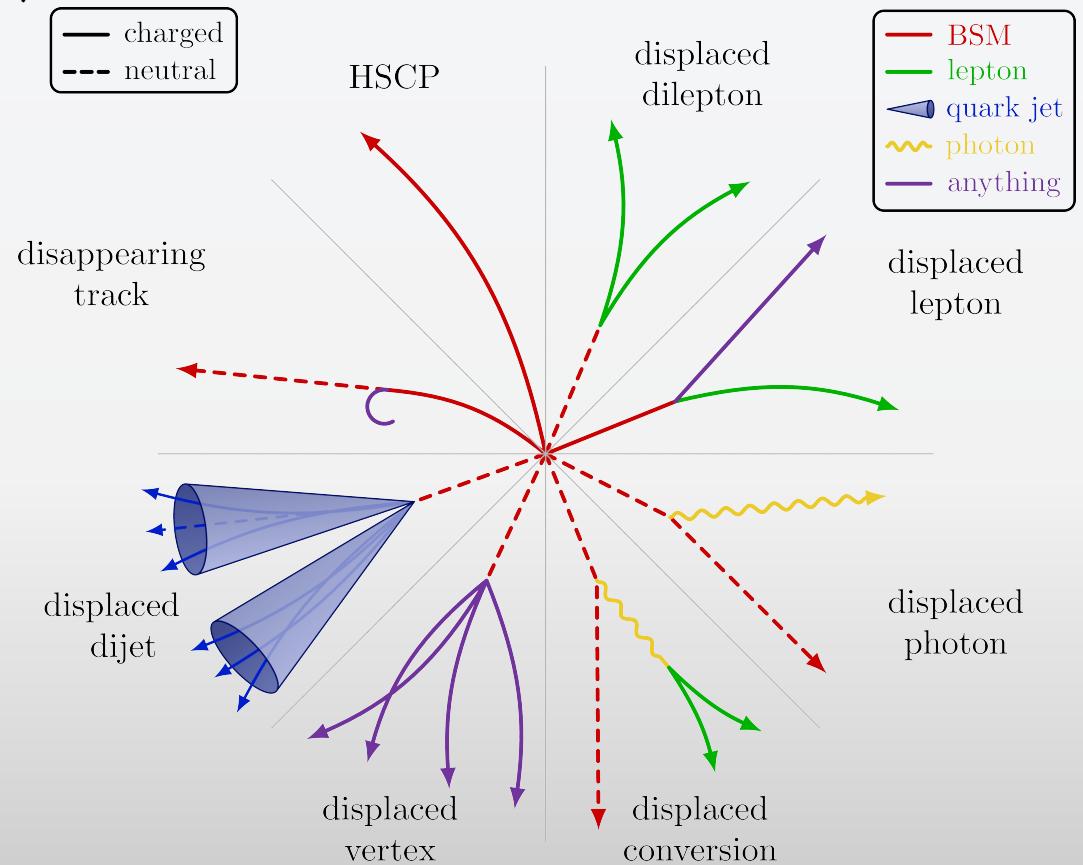
Conclusion

- Incorporating SV features enhances LLP signal identification
- Best performance achieved with SV mass and decay length sig
- Future plans:
 - Add minor backgrounds
 - Testing signals with different properties
 - Implement the full analysis workflow
 - Start with real data by adding to the histograms

Backup

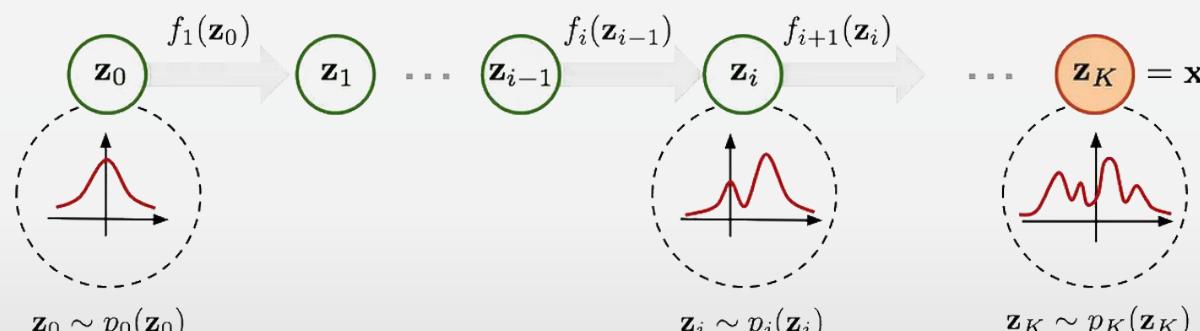
Long-lived Particles (LLPs)

- LLPs appear in many BSM theories (SUSY, dark matter...)
- Particles with measurable lifetimes before decay
- Can travel significant distances inside the detector
- Produce displaced vertices
- Secondary vertices provide good features for LLPs

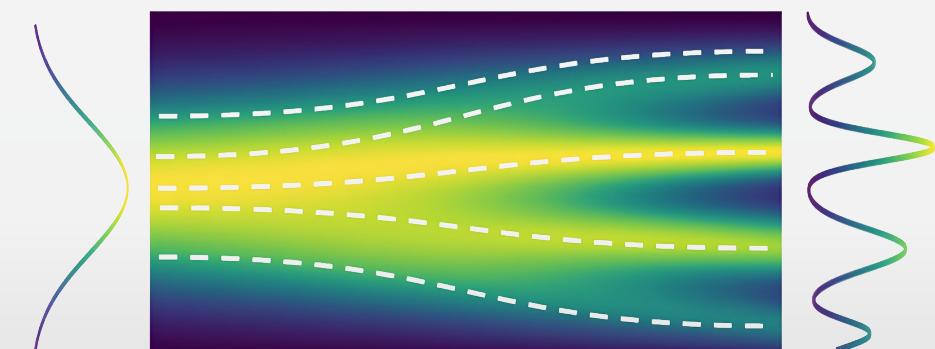


Generative Models

- Normalizing Flow uses arbitrarily complex bijective transformations f_θ
- Flow matching uses continuous vector field v_θ that transforms points along a trajectory
- Conditional flow models features conditioned on given variables (e.g. m_{jj}), allowing generation
- The model learn the weights of f_θ or v_θ



Normalizing flow

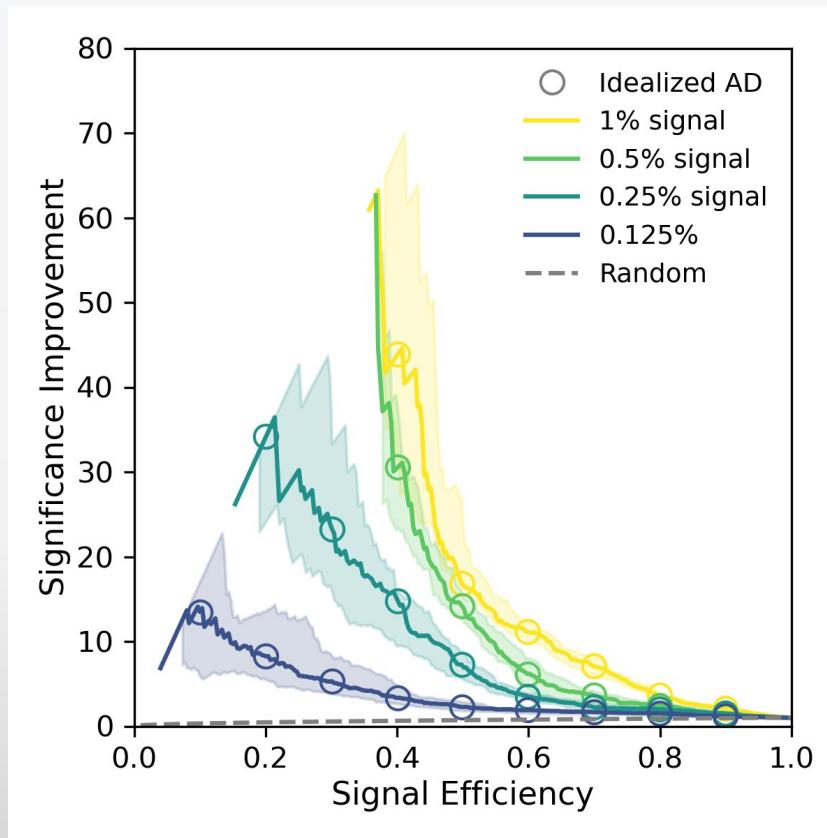


Flow matching

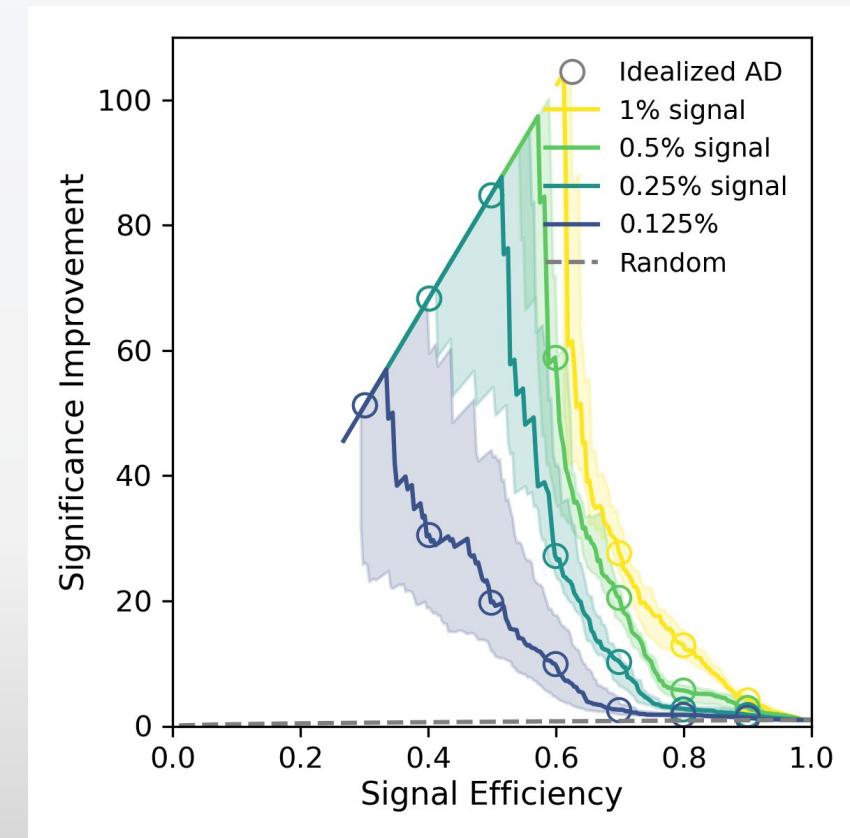
NanoAOD Features

SV_charge	sum of the charge of the SV tracks
SV_chi2	reduced chi2, i.e. chi/ndof
SV_dlen	decay length in cm
SV_dlenSig	decay length significance
SV_dxy	2D decay length in cm
SV_dxySig	2D decay length significance
SV_eta	eta
SV_mass	mass
SV_ndof	number of degrees of freedom
SV_ntracks	number of tracks
SV_pAngle	pointing angle, $\text{acos}(\mathbf{p_SV}^*(\mathbf{SV-PV}))$
SV_phi	phi
SV_pt	pt
SV_x	X position, in cm
SV_y	Y position, in cm
SV_z	Z position, in cm
nSV	secondary vertices from IVF

Different Number of Signals



2LLP->4b



2LLP->4q