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LUXE ECALs

ECAL-E => ECAL-NPOD
(eading candidate!

ECAL-P & ECAL-E envelopes

« ECAL-P:
» 540 x 90 x 90 mm?3 = Sandwich sampling calorimeters
= 96 x 16 x 20
« ECAL-E:
= 360 x 180 x 225 mm3 » CALICE prototype in beam test campaigns
» 64 x 32 x 15 = [hicker tungsten

= [ hicker silicon

ECAL-NPOD Performance 3 SH (IFIC) @ LUXE 2025-01-28



ECAL-P group (FCAL-LUXE)
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Coordinate system in mm

(x,y,z) in mm

- Revert x-axis to keep RHS
- Keep z = 0 plane afloat

(+45, -90, 0)
(3D model by Nofar)

LUXE ECAL TB 6 2025-10-13



Testbeam 2025 at DESY

e 2/0M Events in total with energies from 1 to 5.6 GeV

o Tracker mode (no absorber)

o 9 XO
o 11 Xo
m XY Scan

m -15to 15 degrees runs

o Shower tail study runs
m 15 X0,18 XO, and 21 XO

~— Tungsten plate

View from the top

4.7 mm plane pitch
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TB data readilness

- Telescope

- First user of the "new ALPIDE" telescope

- Tracking & alignment with Corryvreckan (tested in 2022)
- Detector

- Online zero-suppression data (tested in 2022)

- Offline debug data (tested with 3 methods)
- Telescope-detector alignment

- Hough transform

- Unbinned 1l1ikelihood

- Ali1gnment 1nside the detector



Telescope: data error

B huangsha@glui02:~/flc/LUXE/TB2025/telescope/v1_0

9:[2026-01-09 145:50.978]
:[2026-01-09 145:50.978]
:[2026-01-09 145:50.978]
:[2026-01-09 145:50.980]
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:[2026-01-09 145:51.019]
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:[2026-01-09 145:51.020]

9:[2026-01-09 145:51.020]
:[2026-01-09 12:45:51.020]
:[2026-01-09 145:51.023]
:[2026-01-09 145:51.023]

9:[2026-01-09 145:51.023]
:[2026-01-09 145:51.023]
:[2026-01-09 145:51.023]
:[2026-01-09 145:51.024]
:[2026-01-09 145:51.090]
:[2026-01-09 145:51.090]
:[2026-01-09 12:45:51.090]
:[2026-01-09 145:51.090]
:[2026-01-09 145:51.090]

9:[2026-01-09 145:51.090]
:[2026-01-89 12:45:51.091]
:[2026-01-09 145:51.091]
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Caribu error (fixed after TB)



Telescope: quality

Track Fit p-value (Single Tracks, ndof > 0, Log Scale)
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Detector: amplitude/ToA finding

- Offline debug data analysis

- Dawid:
- Melissa:

Deconvolution (used in production)
CR-RC curve fitting

- Arkadiusz's method (WIP)
- ALl three methods seem to agree
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agh.edu.pl

ll“]]JJ % Deconvolution
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Without beam clock (e.g. cosmic muons) ADC sampling is asynchronous with FE pulse
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Deconvolution vs Fit

Hit Amplitude Spectrum - Plane 0

TB_FIRE_1499 50k _raw_reco_hybrid.root
’_| Fit (TB_FIRE_1499 50k _raw_reco_hybrid.root)
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Common Hit Amplitude Spectrum - Plane 0
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Example for plots

Work by Michal

Track Positions BEFORE Rotation (Top 10 pads) - Run 1255
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Concept

Likelihood definition

1-D probability distribution
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1-D probability density model

Realistic detector, assuming finite telescope
position resolution (o) and noise (pp):

i1

p(v) = p1-SF + Po

o

where SF() is the “survival function” of the
normal distribution (from SciPy library)

o can be an additional model parameter
p1 and pg should rather be fixed

January 12, 2026 4/16
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Work by Barttomiej]

[
Fit run 1165 plane 9 Gauss PDF

Particle position at DUT

100 T uo = 10.99997 + 0.00116
7.5- !
o Vo = 8.29401 + 0.00129
E 25 ¢ = 0.00279 + 0.00119
= 0.0
3 -25 Old parametrization results:
~5.0{ 77 4
s L e uo = 10.99511 =+ 0.00058
100 : :' B i
-0 - Sl s o > 10 L 20 vo = 8.29201 4+ 0.00088

¢ = 0.00196 £ 0.00017

p(u,v) = p; - PDF (M) . PDF (M) + po.

O x Oy

_Telescope alignment - unbinned likelihood method |

January 12, 2026
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Punch list

« Basic calorimetry

[ ] Longitudinal shower profile (leakage)

[ ] Moliere radius (transverse profile)

[ ] Preliminary energy resolution and linearity
« Specific topics

[ ] Position resolution

[ ] Angular resolution

[ ] Effects from hardware (gap, glue, precision, ...)
[ ] Monte Carlo simulation for TB layouts

- [ ]...

LUXE ECAL TB 14 2025-11-10



Missing acceptance - dead channels and gap

L
o

The Reality: Our detector has a lot of dead area

Sensor Y [mm]
N
o

© Inter-sensor Gap: ~ 1.72mm spaces between
wafers.

© Dead Channels: Masked noisy or not working
pads.

The Effect: When a shower crosses a gap or dead area,
artificially decrees measured energy. This creates "dips”
in the radial profile and lowers the total energy.

Dawid Pietruch (AGH) Moliere Analysis

Accumulated Bad Channels

-20
Sensor X [mm]

Map of Dead Channels & Gaps

January 19, 2026
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Geometric Correction: How it works

Assumption: Electromagnetic showers are Radially Symmetric.

The Algorithm - per Radial Ring (width = dr):

Q Ca
Q Ca

cu

cu

ate the Theoretical number of su

o pads within the ring (N:iotar).

ate the number of Active sub pac

pads within the ring) (Ngood).

© Scale the measured energy:

E corrected — E measured

s (excluding number of dead sub

Work by Dawid

If a ring falls 25% into a dead
area:

® We only see 75% of the
energy.

® We multiply by
1/0.75 = 1.33.

January 19, 2026

Dawid Pietruch (AGH)

Moliere Analysis



Result: Comparison for different beam energy

Total Amplitude -
=00 P 1000 IWorI}< by Daw1d

16 I l ............. ‘ .......................................... ‘ .............. ............................. ‘ .................................................................................... ‘ ............. ‘ ....................... Pr]efix.; resu|tls/T|3_|:|RE_
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Dawid Pietruch (AGH) Moliere Analysis January 19, 2026



Result: Comparison for different beam energy

Lateral Profile R

Work by Dawid
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Dawid Pietruch (AGH) Moliere Analysis January 19, 2026



Result: Comparison for different beam energy

Moliere Radius Evolution Work by Dawid

- Prefix: results/TB_FIRE |
. . 1389_raw_reco_v1_1_FuIIGeom_Top1_ResO.2mrr;_Div25_FiItered_CoGé_Corrected
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. . 1193 raw _reco v1_1 FullGeom_ Top1 ResO .2mm§_Div25_Fi Itered_CoG%_Corrected
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2 [ --------- 1154 raw reco v1 1 FullGeom To pv1v;ResO'.2m-m;Div25;F~iIte-red;GoG;Go-rrected ------------------------
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O | l | | ' | | ' I l | I | | ' |
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Dawid Pietruch (AGH) Moliere Analysis January 19, 2026



Position Resolution work by Gal

Difference of Cxjoy and Cxegle Difference of Cxcom and Cxjog . . .
B e The center found by logarithmic
Gt el weighting is calculated by:
3 250000 ;‘3' 150000 - E
S G — n
'{ 200000 '§ e Fit; = =0.00, 0= 0.09 Wn - max {0) WO + ln E }
5 150000 5 it 2n En
100000 Sehon C = Zn ann
50000 r — -
0 0 Zn I’Vn
~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 ~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
Pads Pads
Difference of Cyiere and Cyiog Difference of Cycom and Cyjqg ¢ Opt|mal Value for WO was fOU nd by
300000 . s __a_a .
minimizing the variance and the
250000 100000 -
mean of the gaussian fit to
£ 200000 E; 80000 7
z 150000 — Fit: u=-0.04,0=0.16 2 60000 - — Fit: y=-0.01,0=0.09 dlfferences from telescope:
S 100000 S 40000 | Wo opt 3
50000 20000 Tested for 3runs (1154: 5 GeV, 1280:
0 0 8 S 4 GeV, 1255: 2 GeV)
~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 ~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.7S 1.00

Pads Pads



Angle reconstruction

VISUALISATION

21



dR/dt (mean[MIP])

Shower Profile Fit: Rot?e~Pt (with Error Bars)
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-15° angle - run 1435 - 5 GeV
15° angle - run 1429 - 5 GeV
-5° angle - run 1363 - 5 GeV
5° angle - run 1362 - 5 GeV
0° angle - run 1300 - 5 GeV
-10° angle - run 1368 - 2 GeV

e
—
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Work by Nofar

Average track projection in XY plane - run 1429

Y (in pads)
(@)

Mean position
Event spread (std)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-X (in pads)

Agenda

As expected, here the peaks of
5 GeV have nearly the same
location.




 Reconstructeddata

6000 -

:

Num. of events
s

:

2000

1000 -

Shower energy (MIP) for 5 GeV, including all layers, run 1340, position (-4.9, 10)

| Wl Al events

B ntrackid = 1

e ntrackid =1, yF < 19

mm ntrackid = 1, [0.5<y* red<?)
B ntrackid = 1, [0 5<y* red<?), 11 layers

400 500
E_deposition per shower in MIPs

200 300 600 700

Num. of events

400

350 -

N
n
o

N
o
o

—
w
o

100

Work by

Shower energy (MIP) for 5 GeV, including all layers, run 1340, position (-4.9, 10)

Al events

ntrackid = 1

ntrackid = 1, y* < 19

ntrackid = 1, (0.5<¢’_red<2)

ntrackid = 1, (0.5<y* red=<2), 11 layers

700 800 900
E_deposibion per shower in MIPs

1000 1100

~» Peak has shifted to the right, from ~ 440 (ZS) to ~480 (Recons.) MIP.

« Percentage of events with all 11 layers (taken from all the data) : 85.93%. SR
~« Percentage of events with all 11 layers (taken from only ntrakckid = 1 data sample) : 86.25%.
* Further investigation required about the 2 particles peak. (appear even after filtering)

Ronil



ENERGY LOST AROUND THE GAP

Fris(r) =c+mzx+A-e

0 = arctan(m)

4+
v
+
(o)
>
gy
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QL
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-
=
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=
C

o)
-
-
o

Work by Ben

Energy vs X position, |chi2 - 1| < 0.05

- Gaussian fit

[]

data
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Standalone simulation

W s

e Simulations with Geant4 Work by Mihail

o TB 2025 Configurations identified
o Active plane geometry and sub-layer materials will be applied to Geant4 geometry

1. Geometries and materials

investigated setups (layouts)

i By
A ’
= M 3
! ¥
«
-
» - A
D -
5 5

« 8-layers with g Xo

0.32 mm Silicon sensor

0.25 mm Carbon fiber

A. Identification of stack configurations used in TB2025

« =5 configurations used in test-beam with some variations w 2 % b 'j

0.12 mm Copper kapton 0.07 mm HV

3.5 mm Tungsten plate

« testruns (3 sensorlayers)

« 11 layers with 11 Xo

S e -

0.1 mm epoxy glue 0.05 mm conductive glue

20

25
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Ancgular and entrv-point resolutions

- Furthermore, we focused on the beginning part of the cluster
core (hits before the barycentre) to improve the resolution.

— ~—

g 4_] 1T 1 I T T 1 I 1T 1 I 1T 1 I | L L I T 1 I | l_ lg 4_] || | I 1T I T 1T l | L L L l T 1 I | l_
8 : LUXE ECAL NPOD : E : Geometric model (inc. ang=5.0 [deg.]) :
~. 3.5 — = 3.5 —
- B _ ®) b ——— anxiv 2507.17716 ’
O - Geometry model - — - -
5 3 - . % 3 - . improved algorithm .
2 - - % - -
O 2.5¢ - S -
= 2 5: & arxiv2507.17716 - — 2 5: .
. . (- B .
4V 2 | — N _
> 2—— __ 8_ 2__ ]
(@) - . B \\\\\L -
- - . . - 2 - _
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© 1 '5—_ i ’ ] E 1 .5__ - \@\ ]
- o 5 © n 8B 4—5 @ T ]
1 : 1 S
0.5 — 0.5 —
O:l | 1 1 | | I I L 1 1 1 | L1 1 1 | 1 1 1 1 I | I A . | l: O:I | 1 1 I | I | I | I .| I L 11 1 I | I .| I | I | l:
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photon energy [GeV] photon energy [GeV]

High-granular & compact ECAL for Higgs and DM 27 DRD Calo en Espafna 2026-01-13



More geometries

- S1IW-ECAL prototype 1s highly modular and relatively easy to
modify 1ts geometry, such as total Xp and repartition ratio.
« Maintain the 15 mm layer "pitch":

18Xe (15 x 4.2 mm plates) 12X (5 x 4.2 mm + 10 x 2.1 mm)

9Xo (15 x 2.1 mm plates) 12Xe (10 x 2.1 mm + 5 x 4.2 mm)

High-granular & compact ECAL for Higgs and DM 28 DRD Calo en Espafna 2026-01-13



More geometries

- S1IW-ECAL prototype 1s highly modular and relatively easy to
modify 1ts geometry, such as total Xp and repartition ratio.
» "Squeeze" on the air gap (inspired by HighCompactCalo):

18Xe (no air between layers)

High-granular & compact ECAL for Higgs and DM 29 DRD Calo en Espafna 2026-01-13



More geometries: Results

- We kept the algorithms unchanged.

'—. 4_ 171 I 1T 1 I L | L I L L I 0Tl | I_ lgl 4_ 11 I T 1T 1 L L L L L | I_
@ [ LUXE ECAL NPOD : 2 ;
S, 3.5 — = 3.5 .
g - Geometry model - 9 - Geometric model (inc. ang=5.0 [deg.]) .
s 3 : = S—— :
6 - —X¥— 9X0 : 8 n -
7)) - — B —FF—— 12X, (10x2.1mm + 5x4.2mm) -
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More W 1mproves the ... but seems to worsen the
angular resolution entry point resolution
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More geometries: Results

- We kept the algorithms unchanged.
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More compactness aggravates ... but benefits the

the angular resolution entry point resolution
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More geometries: Results

- We kept the algorithms unchanged.
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Compactness and more W generally 1mprove the shower separation
efficiency, but the critical point for A remailns at 40-50 mm.
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