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“The t-quark is special”



1. The higher collider energy, the larger weight 
in total cross section
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1. The higher collider energy, the larger weight 
in total cross section

2. The t-quark is heavy, Yukawa coupling ∼1
mt [GeV]=172.9±0.6stat±0.9syst (PDG), 
               173.2±0.6stat±0.8syst (TeVatron)
               172.6±0.6stat±1.2syst (CMS)
               174.5±0.6stat±2.3syst (ATLAS)
                      (yt=1 ⇒ 173.9)
⇒ plays important role in Higgs physics

The importance of being top



1. The higher collider energy, the larger weight 
in total cross section

2. The t-quark is heavy, Yukawa coupling ∼1
3. The t-quark decays before hadronization 

⇒ quantum numbers more accessible than in 
case of other quarks

The importance of being top

|Vtb|2 � |Vts|2, |Vtd|2

1. The higher collider energy, the larger weight 
in total cross section



Top at the LHC

Present: 
production cross section, mass, width, t-T mass 
difference, spin correlations, W helicity/
polarization, Vtb, charge, charge asymmetry, 
anomalous couplings, FCNC, jet veto in tT

Future: discovery tool, coupling measurements
These require precise predictions of 

distributions at hadron level for
pp →tT+hard X, X = H,A,Z,γ,j,bB,2j...

(with decays, top is not detected)
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Why should we care about 
NLO + PS?

•Hadrons in final state
•Closer to experiments, realistic analysis 
becomes feasible
•Decayed tops
•Parton shower can have significant effect 
(e.g. in Sudakov regions)
•For the user: 

event generation is, faster than an NLO 
computation

(once the code is ready!)
...but we deliver the events on request



...to distributions, full of pitfalls & difficulties

There is a long way from matrix elements...

Method

Cerro Torre Patagonia, courtesy of  V Del Duca
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Also covered in Marek’s and Simone’s talk
in the next few minutes:

Check your             profile!!
or check the stock market:

28.
84
$
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‣ Idea: exact calculation in the first two orders of pQCD 

‣ Subtraction method

NLO subtractions

dΦn+1 = dΦn dΦrad , dΦrad ∝ dt dz dφ
2π

dσNLO = [B(Φn) + V(Φn) +R(Φn+1)dΦrad] dΦn

= [B(Φn) + V (Φn) + (R(Φn+1)−A(Φn+1)) dΦrad] dΦn

B(Φn) =

�
dσLO , V (Φn) = V(Φn)+

�
dΦradA(Φn+1)

�
dΦnB(Φn) = σLO
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Idea: use NLO calculation as hard process as input for the SMC

Bottleneck: how to avoid double counting of first radiation w.r.to 
Born process 

From NLO to NLO+PS

Solutions:
- MCatNLO [Frixione, Webber hep-

ph/0204244]

- POWHEG [Nason hep-ph/
0409146, Frixione, Nason, Oleari 
arXiv:0709.2092]

Result: PS events giving distributions 
exact to NLO in pQCD

[Nason, Ridolfi hep-ph/0606275]
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Our choice: POWHEG-BOX with 
HELAC-NLO for tT+hard X

•The POWHEG-BOX implements
•FKS subtraction scheme
•POWHEG method for matching

•HELAC-NLO provides tree and 1loop ME

New
!

Implemented

in progress

[Garzelli, AK, 
Papadopoulos, 
Trocsanyi
arXiv: 1108.0387 
arXiv: 1111.0610
arXiv: 1111.1444
arXiv: 1101.2672]

[Alioli, Nason, 
Oleari, Re
arXiv: 1002.2581]

[Bevilaqua et al, 
arXiv: 1110.1499]•Processes in PowHel:

✓tT and W+W-bB
✓tT+H/A
✓tT+Z
✓tT+jet
•tT+...
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POWHEG-BOX framework

POWHEG-BOX

ΦB B Bµν
j

VRBij
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PowHel framework

POWHEG-BOX HELAC-NLO

PowHel

RESULT of PowHel:

Les Houches file of Born and Born+1st radiation 
events (LHE) ready for processing with SMC followed 
by almost arbitrary experimental analysis



HELAC-1LOOP@dd framework

Processes with more than 2 particles in final state
•Complicated tensor integrals in 1-loop amplitudes
•High rank ones with possible numerical 
instabilities
•If double precision is not enough (check)

➡ use double-double precision

HELAC-1LOOP@dd
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HELAC-1LOOP CUTTOOLS

ΦB

V

N = N

HELAC-1LOOP@dd CUTTOOLS@mp

ΦB|dd

N �= N

New
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✓ Check (implementation of) real emission squared matrix 
elements in POWHEG-BOX to those from HELAC-PHEGAS/
MADGRAPH in randomly chosen phase space points

✓ Check (implementation of) virtual correction in POWHEG-
BOX to those from HELAC-1Loop/GOSAM/MADLOOP in 
randomly chosen phase space points 

✓ Check the ratio of soft and collinear limits to real emission 
matrix elements tends to 1 in randomly chosen 
kinematically degenerate phase space points

Each PowHel computation is an independent check of other 
NLO predictions for the process 

(see e.g. arXiv: 1111.0610 for tT Z production)

Checks of the NLO computation
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1. Complete at given order in PT: both resonant 
and non-resonant diagrams

2. Narrow-width approximation (NWA): only 
resonant contributions (spin correlations 
kept)

3. Decay-chain approximation (DCA): on-shell 
production times decay (off-shell and spin-
correlation effects are lost)

“3” implemented naturally in NLO+SMC 

What about spin-correlations?
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How to decay heavy particles?

-Decay at ME level:
•Resonant, non-resonant graphs with spin correlations
•CPU time increased
•Possible different (extra) runs

- Decay in SMC (DCA):
•On-shell heavy objects
•Easy to evaluate
•No spin correlations, no off-shell effects

-Decay with DECAYER (NWA):
•Post event-generation run
•With spin correlations and off-shell effects
•CPU efficient

New!
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•Based on the full NLO calculation of the               
[Bevilacqua et. al. arXiv:1012.4230], but new

W+ W− b b̄

- -

•Uses 
-complex mass scheme
-generation cut: p⊥b > 2GeV
-suppression factors of the Born singular region

•Comparison of LHEF to NLO made for the 7 TeV 
LHC, with a setup listed in arXiv:1012.4230:
-fixed scale µ=mt and PDG parameters, CTEQ6M
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pp→ e+νeµ−νµbb+X

Transverse momentum and rapidity distribution for the b
at 7TeV LHC

agreement is within 5%, Remember: σLHE = σNLO (1+O(αs))
[NLO K-factor is large (~1.5)]
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pp→ e+νeµ−νµbb+X

Transverse momentum of positron, R-separation of  the 
charged leptons at 7TeV LHC

agreement is within 10%, Remember: σLHE = σNLO (1+O(αs))
[NLO K-factor is large (~1.5)]
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Predictions for LHC at 7 TeV
Goal: 

to check effect of various approximations to decays
and provide reliable predictions at hadron level

Cuts:
•anti-k⊥, R=0.4
•|ηtrk|, |ηj| < 5, |ηb-jet| < 3, |ηl| < 2.5
•p⊥

j, p⊥
l > 20 GeV, p⊥ > 30 GeV, 

•ΔRjl > 0.4
•at least one anti-b, b-jet, l+, l-
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√
s = 7TeV

Nice Sudakov suppression at small p⊥, main source of 
difference is origin of first radiation (in further plots also)
The effect of the shower is ~30% (not shown in these plots)
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Effect of NWA vs DCA negligible 
       full vs NWA small
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at 7TeV LHC
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full - NWA agree below 1.5 
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➡ Effects of decays and showers are often important, 
depending on process, observable, shower setup and 
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✓ LHE event files for pp→tt, ttH/A, ttjet, ttZ, W+W-bb 
processes available

➡ Predictions for LHC with NLO+PS accuracy
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➡ Study scale choices and dependences

➡ Generation of events on request

➡ Comparison to data (in progress)

➡ Make codes public

➡ Extension to further processes...

Plans
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Thank you for your attention!


