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1. The higher collider energy, the larger weight
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1. The higher collider energy, the larger weight
in total cross section
2. The t-quark is heavy, Yukawa coupling ~1
mt [GeV]=172.9+0.65+q1+0.9syst (PDG),
173.21‘0.6s’ra’ri0.8sysf (TZVGTI"OH)

172.6+0.65ta1£1.25yst (CMS)
174.5i0.6s’ra’r12.35y51 (ATLAS)
= plays important role in Higgs physics




1. The higher collider energy, the larger weight
in tfotal cross section

2. The t-quark is heavy, Yukawa coupling ~1

3. The t-quark decays before hadronization
= quantum numbers more accessible than in

case of other quarks




Present:
production cross section, mass, width, t-T mass
difference, spin correlations, W helicity/
polarization, Vtb, charge, charge asymmetry,
anomalous couplings, FCNC, jet veto in 1T

Future: discovery tool, coupling measurements
These require precise predictions of
distributions at hadron level for
pp —>tT+hard X, X =H,A,Zy,j bB 2j...

(with decays, top is not detected)
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*Hadrons in final state

*Closer to experiments, realistic analysis
becomes feasible

*Decayed tops

Parton shower can have significant effect
(e.g. in Sudakov regions)
*For the user:
event generation is, faster than an NLO
computation

(once the code is readyl) @

..but we deliver the events on request




..To distributions, full of pitfalls & difficulties
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There is a long way from matrix elements...
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Chec k oL profile!!
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» Idea: exact calculation in the first two orders of pQCD




» Idea: exact calculation in the first two orders of pQCD

» Subtraction method

dO‘NLQ — B((I)n) I V((I)n) + R(q)n—l—l)dq)rad] d(I)n
— B((I)n) V((I)n) (R((I)n—l—l)_A((I)n—l—l)) dq)rad] dq)n

/ d®, B(®,) = ool |V(®,) = V(@,)+ / AD, g A(Dy 4 1)

d®,, 1 = d®,, dP,.q, dPyaq o< dtdz %
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Born process
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Idea: use NLO calculation as hard process as input for the SMC

Bottleneck: how to avoid double counting of first radiation w.r.to
Born process

Solutions: —
- MCatNLO [Frixione, Webber hep- i
ph/0204244]

POWHEG + HERWIG
HERWIG
MC@NLO

—
(=}
W

POWHEG [Nason hep-ph/
0409146, Frixione, Nason, Oleari
arXiv:0709.2092]

do/dpy (pb/GeV)

-
o
o

Result: PS events giving distributions |
exact to NLO in pQCD T s 10

pr (GeV)

[Nason, Ridolfi hep-ph/0606275]







* The POWHEG-BOX implements [Alioli, Nason,

*H.

FKS subtraction scheme Oleari, Re
POWHEG method for matching ~ arXiv: 1002.2581]

ELAC-NLO provides tree and lloop ME
[Bevilaqua et al,

arXiv: 1110.1499]
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v 1T and W*WbB
V1T+H/A

V1T+Z

V1T+jet

ot T+, ..
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* The POWHEG-BOX implements [Alioli, Nason,
*FKS subtraction scheme Oleari, Re

‘POWHEG method for matching  arXiv: 1002.2581]

*HELAC-NLO provides tree and lloop ME
\ [Bevilagua et al,

*Processes in PowHel: ri& arXiv: 1110.1499]
+T and( +W bB [Garzelli, AK,

| Papadopoulos,
‘/TT-FH/A Imp/ emented Trocsanyi

/1T+Z arXiv: 1108.0387
T"‘JZT arXiv: 1111.0610
et T+ ' h progl‘eSS arXiv: 1111.1444
arXiv: 1101.2672]
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» Standard MC first emission:

s(t) 1
dosmce = B((I)n)dq)n Asnmc (to) + Agnmc (t) “ ( ) P(Z) @(t — to) dpsMC
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» POWHEG MC first emission:
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SMC idea: use probabilistic picture of parton splitting in the
collinear approximation, iterate splitting to high orders

» Standard MC first emission:

P(2)O(t — tg) dd>MC

rad

_J/

Tim R(®,11)/B(®@)

» POWHEG MC first emission:

R((I)n—l—l)
B(®y)

B(®,) + V(@) + [ [R(@ra1) = A@ni)] a1

A((I)naprfin) T A((I)na kJ_) @(kj_ o prfin) dq)rad










Substitute A(m)g _ 1+ 0(as)
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Substitute A(m)g =1+ O(as)
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Substitute A(m)g =1+ O(ag)




[ avgBo(@y) + [ avnRr(O(@n) - O(@s)

_ / d®g [B + V] O(®p) + / AP RO(PR)
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Substitute A(m)g _ 1+ 0(as)
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POWHEG-BOX HELAC-NLO

RESULT of PowHel:

Les Houches file of Born and Born+1st radiation
events (LHE) ready for processing with SMC followed
by almost arbitrary experimental analysis




Processes with more than 2 particles in final state
*Complicated tensor integrals in 1-loop amplitudes
*High rank ones with possible numerical
instabilities

If double precision is not enough (check)
= use double-double precision

HELAC-1LOOPEdd




w4l CUTTOOLS

» 4 CUTTOOLS@ mp
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v Check (implementation of) real emission squared matrix
elements in POWHEG-BOX to those from HELAC-PHEGAS/
MADGRAPH in randomly chosen phase space points

Check (implementation of) virtual correction in POWHEG-
BOX to those from HELAC-1Loop/GOSAM/MADLOOP in
randomly chosen phase space points

Check the ratio of soft and collinear limits to real emission
matrix elements tends to 1 in randomly chosen
kinematically degenerate phase space points

Each PowHel computation is an independent check of other
NLO predictions for the process

(see e.g. arXiv: 1111.0610 for +T Z production)
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Three approaches:

1. Complete at given order in PT: both resonant
and non-resonant diagrams

2. Narrow-width approximation (NWA): only
resonant con‘rmbuflons (5pm correlations
kept) —
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-Decay at ME level:
*Resonant, non-resonant graphs with spin correlations
*CPU time increased
Possible different (extra) runs

- Decay in SMC (DCA):

*On-shell heavy objects
*Easy to evaluate
*No spin correlaions no of f-shell effects
-Decay WA):
-Post event-generation run
*With spin correlations and off-shell effects
*CPU efficient




W W~ bb pr'oducTion'
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Based on the full NLO calculation of the W W~ bb

[Bevilacqua et. al. arXiv:1012.4230], but new
*Uses

-complex mass scheme

-generation cut: p,p> 26eV
-suppression factors of the Born singular region

Comparison of|LHEF to NLOjmade for the 7 TeV
LHC, with a setup listed in arXiv:1012.4230:

-fixed scale y=m+ and PDG parameters, CTEQ6M







A(pJ_ ,min)O((I)B) _I_/dq)radA(pJ_)%O(q)R)
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(0) = /d@BE APL min)O(PB) _I_/dq)radA(pJ_)%O(q)R)

[ a0u 18+ vio@s) + [ dchRO@R)} 1+ O(as))

Useful for checking l




(0) = / a5 |

| / ddg [B + V] O(dp) + / ddr RO(PR)
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Goal:
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| Cuts: '
'Gn'ﬁ-kj_, R=04

*|nirkl, [Nyl < B, [Nbjer| < 3, [mi] < 2.5
p., p.'>206GeV, p. >30GeV,
*AR; > 0.4

at least one anti-b, b-jet, I, I




| | | | |

— W+ W~ bb+PYTHIA

= = tt+DECAYER+PYTHIA
t t-++PYTHIA —

tb/GeV]
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=
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Nice Sudakov suppression at small p. main source of

difference is origin of first radiation (in further plots also)
The effect of the shower is ~30% (not shown in these plots)
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Transverse momentum of b-jet and positron at 7TeV LHC

Effect of NWA vs DCA negligible
full vs NWA small
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Rapidity of b-jet and positively charged lepton at 7TeV
LHC

Effect of NWA vs DCA negligible
full vs NWA small
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p. of the two b-jets, invariant mass of positron and b-jet
at 7TeV LHC

Effect of NWA vs DCA negligible
full vs NWA ~40% above 150 GeV
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p. of the two b-jets, invariant mass of positron and b-jet
at 7TeV LHC

Only distribution where NWA vs DCA differ (among 32)
full - NWA agree below 1.5
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v First applications of POWHEG-Box to pp—tt + hard X
processes

v' SME's obtained from HELAC-NLO
v NLO cross sections are reproduced
v PowHel LH events are reliable

= Effects of decays and showers are often important,
depending on process, observable, shower setup and
selection

V' LHE event files for pp—tt, tTH/A, ttjet, t1Z, W*W-bb
processes available

= Predictions for LHC with NLO+PS accuracy




= Study scale choices and dependences
= Generation of events on request

= Comparison to data (in progress)

= Make codes public

= Extension to further processes...













Thank you for your attention!




