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(GENERAL MOTIVATION: THE TOP QUARK IS SPECIAL

QUARK MASSES The top-quark tends to stick out...

@ almost as heavy as a gold atom

@ couples to new particles in many
models of new physics

@ producing top quarks and studying
their properties is a main goal of
present hadron colliders
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THEORY MOTIVATION: RESUMMATION FOR tt PROD.

@ quantify at two loops structure of IR divergences in scattering
amplitudes involving both massive and massless particles
[Ferroglia, Neubert, BP, Yang '09]

@ implement NNLL resummation for processes with four partons
(non-trivial matrix structure in color space)

[Ahrens, Ferroglia, Neubert, BP, Yang '10, '11]

o understand soft-gluon resummation for very boosted production
(e.g. My > my) [Ferroglia, BP, Yang '12]

@ phenomenology
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OUTLINE

o factorization and fixed order calculations
@ resummation for top pair invariant mass distribution

e the techniques
o three issues

@ total cross section
o different approaches to resummation and recent NNLO results
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FACTORIZATION FOR INCLUSIVE PRODUCTION

Factorization for hyhy — ttX:

daﬁfﬁm = Z Xm dX2 f,'hl (X17 #F)f)‘hZ (X27 ,uF)da'U (§ Mg, ..., as(/”R): HEs ,U’R)
1,j=49,9,8

s= (ph1 + ph2)2 , S = X108

Strategy:

o take PDFs from data (PDF set collaborations)
@ calculate partonic cross sections dé;; in QCD (Feynman diagrams)

dgy = a2dsl) + aldal) + ...
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FEYNMAN DIAGRAMS FOR ddj

q t g t g t g t

@ g dominant at Tevatron (~ 90% of cross section)
o gg dominant at LHC (~ 75% of cross section at 7 TeV)

Higher-order corrections:
@ virtual corrections and real emission
o (qg,qg) — ttX (numerically small)
NLO known for 20 years, but would like to go beyond
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TOTAL CROSS SECTION AT NNLO IN FIXED ORDER

~NNLO

_ AVV
Owax — O

+0

Many partial results in fixed order

) 6V\Q Czakon, Mitov, Moch; Bonciani, Ferroglia, Gehrmann, Maitre,
Manteuffel, Studerus; Kniehl, Korner, Merebashvili, Rogal ...

) 6RV'(1400p tf4—j) Dittmaier, Uwer, Weinzierl ’07;
Bevilacqua,Czakon, Papadolpoulos, Worek ’10; Melnikov, Schulze ’10;
Gehrmann-De Ridder, Glover, Pires ’11

@ 6BR: Czakon ’11; Abelof, Gehrmann-De Ridder ’11

Recent paper completed NNLO calculation in gg — ttX channel (!)
[Baernreuther, Czakon, Mitov '12]

Differential cross sections?
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WHEN FIXED ORDER IS NOT ENOUGH ...

Example: differential cross section at large pair invariant mass Mz

(M = /(P + p1)?)

dé;
dM“ Z/ U T/Z N’f) th_

t

N;ll%ﬁj(7/27uf) [5(1—Z)C£J’+Z Z a2 {%L—k]

m>1n<2m—1

@ when 7 = M% /s — 1, logs give large corrections, fixed order expansion fails

@ large logs in z = ﬁ/s — 1 limit related to soft gluon emission and can be
resummed using factorization and RG techniques (in SCET)

fii (v, pr) f fiyn (X, 1er) £/, (v /X, pir) are parton luminosities
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OUTLINE

@ factorization and fixed order calculations
@ resummation for top pair invariant mass distribution

e the techniques
o three issues

@ total cross section
o different approaches to resummation and recent NNLO results
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FACTORIZATION IN THE SOFT LIMIT

Momentum scales at z = M2 /5 — 1:

g: Ml?fv m? > Es2 ~ g(]' - 2)2 > A(QQCD

Factorization:

déij
dMzd cos 6

2E(z)
pr

=Tr |Hj(Mg, m:, cos 0, ur) Sjj < SVt Vv, .,as(,uf))] +0(1-2)

Kidonakis, Sterman (’97)

@ Hj; are matrices related to hard virtual corrections

@ S;; are matrices related to soft real emission. They depend on z through
0(l—2z)or

af {M} ; m=0,---,2n-1
1-=z +
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HARD-SOFT FACTORIZATION (QUARK CHANNEL)

S.III
999 Qe
o595 § N
) .
T _ T
(b)

Ty~ C(M,my, .. ) x %2 3% h3h% x ¢}

n vyl

qq _ qq _
(Cl ){a} - 5313253334’ (CZ ){a} - t§231 t§334 )

d6 ~ > C1SuCH X |{tEXn Xn Prshv,|qd)|> = Tr[HS]
1,J
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RG EQUATIONS: HARD FUNCTION

RG equation:  (recall Hy ~ G C)

d
dinp

H(M, m;,cos0, 1) = (M, my, cos 0, u) H(M, m¢, cos 0, i)

+H(M, my, cos 9, 1) I'T(M, my, cos 0, )

@ anomalous dimension T related to IR poles in on-shell scattering amplitudes
(IRin QCD = UV in SCET)

Solution:

H(M, m¢, cos @, u) =U(M, me, cos 8, up, u) H(M, my, cos 0, un) UT(M7 me, cos 0, up, 1)

/

m
u(m, mt,cosﬁ,uh,u):Pexp/i’tf (M, m;,cosé, )

Hh

@ should choose iy ~ M to avoid large logs in H
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UNIVERSAL SOFT ANOMALOUS DIMENSION TO NNLL

@ General structure (any scattering amplitude!!) [ Mitov, Sterman, Sung;
Becher, Neubert 2009]:

I'({BL {m}a N‘) = Z TiéTj 'Ycusp(Ols) In —M—S,J + Z ’Yi(Oés)

(isj)
T-T
-3 % Yeuso(Buy ) + > 7' (as)
1

(1)

my

+ /ZJ: T - Tj 'Ycusp(as) In _—SIJ

+ ST P TITE T Fu(Bus B Br)

(1,4,K)
+3S it T T T 5(5,1, In Z7k V" Pk pk) .
" —Oik VI * Pk

@ two parton correlations known from on-shell form factors
@ F7 and f, are three-parton correlations, known at two loops
[Ferroglia, Neubert, BP, Yang '09]
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TWO LOOP ANOMALOUS DIMENSION IN TOP
PRODUCTION

2

M .
Mo = {CF Yeusp (ts) (ln e m) + Cr Yeusp (B34, as) + 29 (as) + 270(065)} !

2
2

N 2 00
+5 I:’Ycusp(as) <'” e m) N %”S"(ﬂ“’as)] <0 1)

g0 FY), e 0 &
+ Yeusp(es) In 7 Kl ! 80 ( Zy g
2

M .
Mg = {N Yeusp(Qts) <In ? — Iﬂ') + CF Yeusp (B34, @vs) + 298 (i) + QWQ(QS)] 1

2

N t 0
1 .
+ E I:’Ycusp(as) <In M2mf + /77) - 'YCUSP(6347 as):| 8

,[/0 1} 0 0
tresplas) In D | (10— ) D gy |y
Yeusp|&s ) IN 2 - 4% an 8\ P34 0

1

[l ]

BEN PECJAK (MAINz U.) RESUMMATION IN tf PRODUCTION

N——

O Ovz oo

o O O
~——
| I

01.06.12

13 / 32



RG EQUATIONS: SOFT FUNCTION

o Laplace-transform:

~ 1 [ w
S(L, M, mg, COS 0, ,LL) = ﬁ /0 dw exp (-W) S(w, M, mg, COS 0, ,LL)

@ RG equation:

M2
L§ In —, M, m;,cosO, ) =
dinp 12

2
— [F(M, m¢,cos 6, 1) + 748 <In Mz’ M, m;, cos 8, ,u)
w
M2
-8 <In iz M, m;, cos @, u) [F(M, my, cos 0, 1) + ve)
@ Momentum-space solution [Becher, Neubert '06]

S(w, M, me,cos 0, pir) = V'3 exp [—4S(pis, i) + 42,0 (s, )]

1 [ w\> e 2En
X uT(M7 m, CO597 Hfy ,U‘S)g(a’fh M7 thOSG: ,Us) U(M, mz, cos gv,ufv.us) ; <_> r(2n)

Ms
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RESUMMED PARTONIC CROSS SECTION

All-orders resummation formula (A ~ 1 — z):
dé
dAﬂﬁ

osamin ] 522 2 ()

~ exp[4a,0 (15, 1r)] Tr [Un (1 1) H(12n)

+O(N)

Three questions:
@ is this also useful if M,z is not large?
o if Mz is large, shouldn’t one use Mz > m;?

@ how to choose ps?
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Yeusp r H, s\

3-loop | 2-loop | 1-loop

Ahrens, Ferroglia,
Neubert, BP, Yang
(’09, ’10)

01.06.12 15 / 32




Three questions:
@ is this also useful if Mz is not large?
o if Mz is large, shouldn’t one use Mz > m;?

@ how to choose ps?
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DYNAMICAL THRESHOLD ENHANCEMENT

a2 [

m>1n<2m—1

Leading terms in z — 1 limit dominant if:

T = M%/s — 1 (high invariant mass)

o fij(7/z, 1) largest as z — 1, even if 7 not close to 1

(“dynamical threshold enhancement”)

LHC (7 TeV),  ~ 0.003
500

r/zp) [60-2C+Y S ardl, |

Tevatron, 7 ~ 0.04

O 1500

1000

500

fij(7/z,17

@

)

I

N

qgbar

fij(7/z,170 GeV)

q gbar
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DOMINANCE OF SOFT GLUON CORRECTIONS AT NLO

0.8

%50 /s =196 Te ’>‘: Vs=T7TeV
Q K&
£ w0 2
1+ \: 0.4
S 20 E‘“
= T 02
10 NG
g S
<
0 30 70 500 00355 200 %50 500
M (GeV) M (GeV)

@ green band = exact fixed order at NLO (us = 200, 800 GeV)
@ dashed lines = leading terms for z — 1 at NLO (ur = 200, 800 GeV)

Soft gluon corrections dominate cross section at all M,z
(at NNLL, where logarithms and constants determined)

do~ 14+ as(P 4+ L+1)+ (L + P+ L2+ L+1)+...
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Three questions:
@ is this also useful if Mz is not large?
@ if Mz is large, shouldn't one use Mz > m,?

@ how to choose ps?
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RESUMMATION FOR BOOSTED PRODUCTION
When M > my: [Ferroglia, BP, Yang '12]

do

aMm ~ Hp(me, M)Sp(me, M(1 — 2)) + O(1 — 2)
— H(M)S(M(1 - 2)) ® DE/t(mtﬂ m(l—2))+0(1-2)+0 (%)
= [C3(m)H(M)] [S(M(1 - 2)) @ SB(me(1 — 2))] +O(1 —2) + O (T7)

@ m; dependence is in heavy-quark fragmentation functions D, ,
® M dependence is in hard and soft functions with m; = 0 from beginning
@ can use RG equations to resum soft logs and logs of m;/M

@ can also calculate NNLO matching coefficents to determine d-function
correction in limit m; > M (only NNLO soft function unknown [Ferroglia,
BP, Yang, in progress])
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SizE OF NLO AND NNLO CORRECTIONS

do ~1+ as (Z (M, m)L" + co(M, m¢)

n=1

> da(M, me)L" + do(M, m¢)

) —|—a§ (
n=1

=

M =500 GeV | M = 1500 GeV | M = 3000 GeV
cnL™ terms, exact in m; 0.074 1.04 x 10~* 0.70 x 10~ 7
cal™ + In(m:/M) terms in co 0.085 1.35 x 10~* 0.94 x 1077
L™ + ¢ for me — 0 0.126 1.79 x 10~* 1.19 x 10~
cnl™ + ¢y exact in m; 0.154 1.86 x 10~ * 1.20 x 107

TABLE: NLO corrections to the differential cross section do/dM (in pb/GeV)
with gr = M at LHC with /s =7 TeV.

M =500 GeV | M = 1500 GeV | M = 3000 GeV
d,L" terms, exact in m; 5.67 x 10~ 1.22 x10°* 1.11x 1077
doL™ + In(m;/M) terms in do | 6.35 x 10~ > 1.40 x 10~* 1.26 x 1077
TABLE: NNLO corrections.
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Three questions:
@ is this also useful if Mz is not large?
o if Mz is large, shouldn’t one use Mz > m;?

@ how to choose pis?
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CHOICE OF us (“QCD vs. SCET”)

S(w, M, me, cos 0, jir) = V'3 exp [_45(N57Nf) + 42, (s, Nf)]

. 1/ w\2" e2vEN
X uT(I\/I, me,cos 0, pr, ps) 8(0y, M, me, cos 0, pus) u(M, me, cos 0, pif, pis) " (“—> e
S

1) “QCD": choose scale s in Laplace or Mellin space so that partonic logs vanish
(must deal with Landau pole but exponentiate partonic logarithms)

2) “SCET": choose s = ps(M) to minimize corrections to hadronic cross section
(no Landau pole but don't exponentiate all partonic logarithms)

c
S o5 Vs =196 Tev Vs =196 Tev
O o4 E 3
(3]
o \waz
SN 101\
0.1
)
d 0 01 02 03 04 05 400 600 800 Jooo
ps/M M (GeV)

M = 400 GeV (dark), M =700 GeV (medium), and M = 1000 GeV (light)

Different philosophies, not clear (to me) that one is better than the other
(see discussions in [Ahrens et. al. 'll] and especially [Bonvini, Forte, Ghezzi, Ridolfi '12])
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OUTLINE

o factorization and fixed order calculations
@ resummation for top pair invariant mass distribution

e the techniques
o three issues

@ total cross section
o different approaches to resummation and recent NNLO results
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RESUMMATION IN THREE SOFT LIMITS

Name Observable Soft limit

pair-invariant-mass (PIM) | do/dMgdy | (1—2z) =1— M3%/5—0
single-particle-inclusive (1Pl) | do/dprdy ss=58+Hh -+ —0

production threshold o B=+/1-4m?/5—0

do = PDFs @ [donnin(In ) + O(L, )] A€ {B, s, 1— 2}

@ dynamical threshold enhancement and structure of O(1, \) corrections is
different in each limit, although 8 — 0 is a special case of the other two
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NNLL CALCULATIONS FOR TOTAL CROSS SECTION

1) production threshold (3 — 0, total cross section only)

@ Langenfeld, Moch, Uwer ‘08, ’09; Czakon, Mitov, Sterman ’09;
Beneke, Czakon, Falgari, Mitov, Schwinn ’09

@ method for joint resummation of soft gluon and Coulomb terms

(~ In™3/3") developed and implemented in Beneke, Falgari, Schwinn
’09; Beneke, Falgari, Klein, Schwinn ’11

® Mellin-space NNLL in Cacciari, Czakon, Mangano, Mitov, Nason ’11

2) PIM kinematics (integral of M.z and y distributions)

@ in SCET Ahrens, Ferroglia, Neubert, BP, Yang ’10

3) 1PI kinematics (integral of pr and y distributions)

@ Kidonakis ’10
@ in SCET Ahrens, Ferroglia, Neubert, BP, Yang ’11
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NNLL AND APPROXIMATE NNLO

In Laplace space:

NNLL

NLL
d& ~ exp(Lgl(asL)+g2(asL)+asg3(asL)+---) Clas) +O(N)

constants

~ 14as(LP+L+1+0N)+a2(L* 4+ L+ L2+ L+14+ O(N) + 0(a?)

NLO

approx.NNLO

@ resummed formulas (NLL, NNLL, etc.) exponentiate large logs
@ approximate NNLO formulas keep logarithmic parts of full correction

@ some freedom in what to add to O(1) and O()) terms
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APPROXIMATE NNLO IMPLEMENTATIONS OF NNLL

pt

2 +R'P(8)

R aproxpt. _ Zd2° In™ [3+[),<c22t In® B+ ey In B + cfgt) + 2

3 m )
5(2) approx. 1PI /df1d54{Zd,l,,PI {In (2Es(54)//'l‘f):| 4 Plg(s) + R 1PI(S4)}
+

J=q4q,88 ‘ Sa
m=

® pieces in blue determined exactly from NNLL (or Coulomb res. for p.t.)
® two schemes appear in literature for 1Pl (and PIM) kinematics:

scheme extra terms in R “damping factor”
. _ S 1 n 2 -
Ahrens et al | 1Plscer: 2Es(ss) = \/ﬁ = In"(1+s/m;)
Kidonakis 1PI: 2E;(s4) =~ sa/m; —_— 5 5@ « 2mt/\/§
=60 x\1-2

@ different groups also include different structure of In" m;/u terms (HATHOR
includes all, Kidonakis includes 6(ss), SCET includes some of d(ss) but not all)
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NNLO APPROXIMATIONS FOR TOTAL CROSS SECTION
m; = 173.1 GEV, m:/2 < pr = pr < 2m;, MSTW2008 PDFS

NLO i .
HATHOR (3 — 0) —_—— e
Kidonakis (1PI) —e e
1PI — —e
1Plscer - -
PIMsceT - D
PIM EE— A A—
5.‘5 6‘0 515 710 7‘.5 1‘20 1:‘50 1“30 1‘50 1230 1‘70 180
o (pb), Tevatron o (pb), LHC7

@ scale variation not necessarily good indication of uncertainties from
subleading terms in a given soft limit

@ various efforts to include more sources of uncertainty within certain limits
exist, but ultimately only the NNLO calculation will settle this!
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TEVATRON CROSS SECTION WITH NNLO IN gg
CHANNEL (m: =173.1 GEV, mi/2 < pir = pir < 2m;, MSTW2008 PDFs )

NLO .
NLO+NNLOgg ————
NLO+NNLOgg+1Plgg ——

NLO+NNLOgz+ PIMgy ~ ——e—

L L L L L
55 6.0 6.5 7.0 75

o (pb), Tevatron

@ NNLOgz is exact result from [Baernreuther, Czakon, Mitov]

@ even using most discrepant NNLO approximations in gg channel (the PIM
and 1PI) makes little difference for cross section

@ can further reduce scale dependence by resummation at NNLO-+NNLL in
B — 0 limit (see [Baernreuther, Czakon, Mitov] for numbers)
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NNLO CORRECTIONS IN (3 — 0 LIMIT VS. EXACT

Tevatron, qg channel, u = m;

2
c
.2
3
g — Exact
S -1f ]
S — Singular 8 — 0
=2 — Singular + C‘gg) (Exact Born)
=
3L ~7 77 Singular + C((,g) (Leading Born) |
“bo 0z 04 06 08 10
B
3.60774 1
oD =ol) { 7t 3 ( — 140.368In2 3 + 32.106 In 3 + 3.95105)

+910.222In* 8 — 1315.53 In3 8 + 592.292 In? 3 + 528.557 In 3 + C(,(,f,)} +0(8)

O~ nBp2+p); p=1-3

%qq
Power corrections to 3 — 0 limit are large
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SUMMARY

@ Two routes beyond NLO in top-pair production:

o fixed order to NNLO
@ soft gluon resummation to NNLL

o For total cross section, exact NNLO is known in gg channel.
Approximations are still used in gg channel, but (at least to me) there
is no motivation for threshold resummation.

@ For differential cross sections such as do/dMy; at large Mz, the best
approach is still debatable. Exact NNLO and improved results in
m: < Mz limit will shed light on this.

@ Can also study other differential quantities, such as App (backup
slides) or pr and rapidity distributions.
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OUTLINE

o factorization and fixed order calculations

@ resummation for top pair invariant mass distribution

e the techniques
o three issues

@ total cross section
o different approaches to resummation and recent NNLO results



FORWARD-BACKWARD ASYMMETRY

. Nt(yi >0) — Nt(yi < 0) O'/i4 (0)
AI = i i = — = SA “e .
BTNy > 0) + Ne(y' <0) o s

Tevatron:
@ total asymmetry measured in i = pp or tt rest frame
@ also with cuts on Mz and Ay = y; — yz in tt frame
® NLO-+NNLL calculation in [Ahrens, Ferroglia, Neubert, BP, Yang '11]



TEVATRON FB ASYMMETRY IN LAB FRAME

my = 173.1 GeV, m;/2 < pr = pr < 2my , MSTW2008

NLO ——— NLO
~  NLO+NNLL (1Plscer) —e—  NLO+NNLL (1Plscer)
approx. NNLO (1PI) = approx. NNLO (1PI)
02 03 os o5 05 07 08 09 25 50 55 60 o5 70
oi’ [Pl AT, %]

@ approximate NNLO in 1PI nearly gives exact NNLO qg cross section at
= m; (and is about 8% larger that NLO+NNLL), but only slightly
increases Arg at that scale



TEVATRON FB ASYMMETRY IN tt FRAME

my = 173.1 GeV, m;/2 < pr = p, < 2m; , MSTW2008 90% CL

CDF
NLO —— NLO
——— NLO+NNLL —— NLO+NNLL
ot [pb] Al [%]

@ resummation roughly halves scale dependence in 04 and ¢ compared to
NLO, but scale dependence of Apg somewhat larger Aopp

o if approximate NNLO (1PIl) is “boosted” to tf frame, it gives AL within
errors of NLO+NNLL (which is PIMsceT)

@ EW corrections enhance A"B by about 1.2 [Hollik, Pagani '11]



CROSS SECTION AND Afrg AS FUNCTION OF Mz

/5 =1.96TeV
\

% 0 1 ' = NLO+NNLL |
5 \
© \ o /1 p— NLO |
qe \ === CDFdaa
. m
. 1 ‘ ,:LLOAZ
< <
0.0
o
T o
S CDF data 02

I NLO+NNLL

250
Mz [GeV]

0'010 200 400 600 800 1000 1200

@ good agreement of NLO+NNLL theory for pair-invariant mass distribution
hard to reconcile with App at M > 450 GeV from CDF (less so with DO)

@ EW corrections enhance A™® by about 1.2 both in upper and low bin
[Hollik, Pagani '11]



MOMENTUM-SPACE RESUMMATION: NLO-+NNLL

Philosophy: choose s and pj, such that there are no large logs in
matching functions, run to us using RG

Complication is with soft function (ignoring matrix structure)

)] oy

+

(S

Sl pr) = & SR 59, ) [

@ logs vanish for s ~ w, but w is integrated down to w = 0, so hit Landau
pole

@ choose s after integration over w, such that correction from soft function is
minimized

@ keep parametric counting s ~ w, even though it is a number



HARD AND SOFT SCALES FOR TOTAL CROSS SECTION
IN 1PI KINEMATICS

0.5 T 0.4 T T T
3 B = i = s fhs = fif = [n
0.4 F ] 0.3 LRl T
” | b % 7 RS
2 \ - 2 7 L
X e 2 0.2 ; S
) v Pt S s =
ks 0.3 F\e, PPty 1 b5 7
?:’ é 0.1
8 0.2 9
< % 0.0 !
S Tevatron: S Tevatron]
0.1 ——— LHCT ] -0.1 —-—— LHCT 1
-------- LHC14 v LHC14
0.0 . . . -0.2 . . . . . |
30 50 100 150 200 100 200 300 400 500 600 700 800
us (GeV) up, (GeV)

o left: NLO correction (%) from soft function = p1s ~ 50 — 90 GeV
o right: NLO correction (%) from hard function = uj ~ 400 GeV



APPROXIMATE NNLO

Philosophy: plus distributions give dominant contributions at a given
order, but corrections small enough for series to converge

In approximate formulas re-expand in limit us — pf (n — 0)

S(w, pr) = 3 (9, ps) [% <i)2n:| e

Wf N r(2n) n—0
=)+ X (32)" { (1_z+2mzlsmk>/> (w)] P’"(“’):B 'n’”%L

@ RG equations determine all two loop plus distributions in terms of one-loop
matching function and two-loop anomalous dimensions

2 in form above, must derive two-loop logs in 5(L, 115) separately and add
on to NNLL solution, which only has one loop matching

@ two-loop delta-function term undetermined



RESUMMATION VS. APPROXIMATE FORMULAS

The two approaches are different in structure of plus distributions, at a
given order in as.

Example: approximate NLO (use 1-loop anomalous dimensions and tree matching)
~ _ Oés(,u) E 2 s (1,0)
s =1+ S [ 212 1o+ s

2
= SNLOapprox= 1 + % [‘Wopl(w) + 295 Po(w) — %ro 5(@]

Compare with NLL|xp,o. To expand resummed formula, use
as(ps) = as(pur)[1 — Boors(pr) /(4m) In(u3 /pz) + . ]

SNLLInpo= 1+

asi,uf) {QrOLSPO(w) + (%rol_ﬁ +731—5> 5(‘“)} » Le=ln <M§>

I



ALL ORDERS EXPONENTIATION

In momentum space, can exponentiate the distributions using

1 ( w )2” e 2EN
In(,ug/,u%)—m‘?n W\ pf r(277)

S(w, pr) = { [e745(us’WH%WS(HS?M)E (0, O‘S(Ns))}

n—0
where
as(ps) _ as(ur) 1 as(ue)® 1 B as(pr) | pa
= - - — > InX+...; X=1 —— In=
4T 47 X (47)2 X2 Bo At + 0o ar " w2

But this doesn’t match the “philosophy” of RG-improved perturbation
theory



