Challenges in hard QCD at LHC

H. Jung (DESY, Univ Antwerp)

Outline:

- Where pQCD calculations describe measurements:
 - inclusive jets, heavy flavors at central rapidities
- Where measurements challenge theory:
 - at forward rapidities
- Looking a bit deeper into pQCD calculations
 - do we need uPDFs/TMDs ?
- Where descriptions are completely off:
 - jets at large rapidity separations

Jet production

Where NLO calc work: inclusive jets

• Very good agreement between NLO calculation and measurements over a hugh range in pt, now reaching up to 2 TeV ($x \sim 0.6$) !

Where NLO calc work ...

Agreement within experimental uncertainties in central y range NLO starts deviating in forward region

Where NLO calc work ...

"non-perturbative" corrections

- Measurements corrected to stable hadron level
- corrections from hadron to NLO parton level needed
 - → "non-perturbative" corrections (NP) (really nonperturbative ???)
 - calculated from MC generators PYTHIA/HERWIG

 $C_{np} = \frac{N_{MC}^{PS+MPI+had}}{N_{MC}^{PS}}$

Jet cone radius: competition between PS and MPI !

H. Jung, Challenges in hard QCD at LHC, Event Generator & Resu

"non-perturbative" corrections

obtained from from

PYTHIA/HERWIG

for fixed order NLO no PS should be applied

Where NLO+resummation works ?

POWHEG PYTHIA describes inclusive jets at stable hadron level

no additional corrections applied !

increasing differences towards forward region |y| > 2

Inclusive forward jet measurement

- jets measured in 3.4 < |η| < 4.7</p>
- largest systematic uncertainty: Jet energy scale
- all theory predictions agree with data within experimental uncertainties

Inclusive forward jet measurement

- jets measured in 3.4 < |η|<4.7</p>
- largest systematic uncertainty: Jet energy scale
- all theory predictions agree with data within experimental uncertainties

H. Jung, Challenges in hard QCD at LHC, Event Generator & Resummation workshop, May 2012, DESY

Inclusive forward jet measurement

 forward jet measurement can constrain high x and low x parton distributions CERN-CMS-note 2011-004

- scale: μ_f & μ_r varied by 2 independently
- → ~ 10 %
- PDF uncertainties largest at large p_t coming from large x partons
 ~ 10 ... 30 %

Using inclusive Jets for PDFs ?

- x distribution for inclusive jets in POWHEG different after shower
- can this be consistently used in PDF fits ?

H. Jung, Challenges in hard QCD at LHC, Event Generator & Resummation workshop, May 2012, DESY

ATLAS arXiv 1112.6297

- Comparison with POWHEG
 - large differences
 with PYTHIA and
 HERWIG PS
 seen in forward
 regions
- differences seen even in different tunes !

- **Differences** of PYTHIA/HERWIG PS show sensitivity to higher order radiation in inclusive jets > $O(\alpha_{s})$
 - BUT: higher order contributions also treated by scale variations ... which are very different....
 - Are differences from different PS or due to different kinematic matching ?
 HELP:

Most inclusive jet measurement suffers from higher orders !

Deviations at forward η

LHCb CONF-2011-015

- kt-algo jets $p_t > 20 \text{ GeV}$
- PYTHIA at detector level
 - small η, MC describes
 data
 - large η, large pt, MC
 significantly above data
- →is this just a problem of MC or is there physics behind ?

Challenge: inclusive b-jets

Challenge: inclusive b-jets

- b-jet production $gg \rightarrow b\bar{b}$
- dominates
 inclusive b-jets: probe of gluon density
 Reasonable description by the second bulk of the second
- MC@NLO at central rapidities
- data significantly below prediction at large rapidity and large p_t
- \rightarrow similar to incl.jets at large η

Challenge: inclusive b-jets

- b-jet production $gg \rightarrow b\overline{b}$ dominates
- inclusive b-jets: probe of gluon density
- Reasonable description by POWHEG and MC@NLO at central rapidities
- data significantly below POWHEG and MC@NLO at large rapidity and large pt

Both MCs give similar behavior !

Kinematics with shower in b-jets

- momentum fraction of gluon changes due to kinematics after shower
- low x region influences
 high p_t tail
- different x after
 shower → different
 gluon density ...

H. Jung, Challenges in hard QCD at LHC, Event Generator & Resummation workshop, May 2012, DESY

Inclusive b-jets

→ Is this effect of small x resummation or just kinematics ? H. Jung, Challenges in hard QCD at LHC, Event Generator & Resummation workshop, May 2012, DESY

Why TMDs ?

- x distribution for b-jets in POWHEG different after shower
- x distribution for incl jets in POWHEG different after shower
- x distribution for Z0 in POWHEG different after shower

pure NLO parton level could give wrong results !

The PDF4MC project

- perform fits to F₂ using a Monte Carlo event generator which includes parton showers and intrinsic k_t
- the resulting PDFs agree with standard LO ones if no PS and intrinsic k_r is applied.
- the final PDFs are different because of kinematic effects coming from transverse momenta of PS and intrinsic k_t

H. Jung, Challenges in hard QCD at LHC, Event C

Determination of parton density functions using Monte Carlo event generators (Diploma 2009) Federico C. A. von Samson-Himmelstjerna

CCFM TMDs: from a fit to F_2

• evolved to $p^2 = 25 \text{ GeV}^2$

evolved to p² = 10000 GeV²

H. Jung, Challenges in hard QCD at LHC, Event Generator & Resummation workshop, May 2012, DESY

CMS arXiv 1202.0704

- associated forward & central jets
 - E_t > 35 GeV (anti-kt, R=0.5)
 - leading jets in $|\eta_c| < 2.8$ and $3.2 < |\eta_f| < 4.7$

Deak et al arXiv 1012.6037

- associated forward & central jets
 - are $2 \rightarrow 2$ ME partons producing central & forward jets ?
 - → jets can come from shower partons !

\bullet depends on shower: collinear or k_t factorized shower

CMS arXiv 1202.0704

Correlations of jets:

- Shape and norm not described
- POWHEG/PYTHIA also off
- CASCADE off
- POWHEG/HERWIG
 closer to data
- HEJ within uncertainties
- → BUT different to inclusive jets !!!!

- select (anti-kt) dijets with $p_{t\,min} = 35 \text{ GeV}, |y| < 4.7$ CMS arXiv 1204.0696 as function of rapidity separation Δy between jets
- for large Δy expect rising xsection due to increased phase space (BFKL effects)
- measure ratio of exclusive/inclusive xsection (many systematic cancel)

• (anti-kt) dijets with $p_{t\,min} = 35 \text{ GeV}, |y| < 4.7$

inclusive jets exclusive jets $E_t = 35 \text{ GeV}$ $E_t = 35 \text{ GeV}$ $E_t = 35 \text{ GeV}$ $E_t = 35 \text{ GeV}$

CMS arXiv 1204.0696

- Ratio is only described by PYTHIA (and POWHEG)
 - influence on Tune and MPI very small
- Large deviations at large Δy
 - HERWIG (and POWHEG)
 - HEJ
 - CASCADE

\rightarrow Where is signal for BFKL at large Δy ?

Dijets with jet veto

• Jets with $p_t > 20 \ GeV$ $\bar{p}_t > 50 \ GeV$, Jet veto $Q_0 = 20 \ GeV$

• Measure "gap"-fraction (no jet with $p_t > Q_0$) as function of Δy

Dijets with jet veto

• Jets with $p_t > 20~GeV$ $\bar{p}_t > 50~GeV$, Jet veto $Q_0 = 20~GeV$

Dijets with jet veto

• Jets with $p_t > 20~GeV$ $\bar{p}_t > 50~GeV$, Jet veto $Q_0 = 20~GeV$

Understanding dijets at large Δy

S. Alioli et al arXiv 1202.1475v1

- With increased phase space at large ∆ y more jets can be produced
- NLO (dijet) < 3 jets</p>
- HEJ with small x enhanced parton emissions produces more jets at large ∆ y

- Differences in parton shower mechanism visible
- test with experiment !!!

Understanding dijets at large Δy

Deak et al arXiv 1012.6037

- Decorrelation increase with increasing Δy
- Decorrelation at large Δy reflects details of parton showering
- larger decorrelations expected from k_t -factorized shower

Summary

- Jet measurements from LHC challenge theory
 - $\bullet\,$ inclusive jets at central η are well described by NLO dijets
 - how to determined NP corrections needed for parton level ?
 - deviations from NLO predictions are seen at forward |y|>2:
 - inclusive jets are subject to higher order corrections
 - differences in parton shower + NLO !
 - deviations in dijet correlations:
 - forward-central jets
 - jet veto: gap fraction
 - dijets at large |y| separation
- TMDs might be necessary for proper treatment of kinematics

- It's quite interesting and challenging doing QCD at LHC:
 - even during the Higgs race
- Upcoming issues:
 - small x high energy behavior of QCD
 - where is BFKL, saturation and all this ?
 - high x exclusive limit, threshold behavior
 - is there interesting QCD at highest luminosities ?

Backup

Inclusive b-jets

- b-jet production $gg \rightarrow b\overline{b}$ dominates
- inclusive b-jets: probe of gluon density
- test of unintegrated gluon (TMD) obtained from F₂
 fit
- description similar to MC@NLO at central rapidities
- BUT shape at large pt much better described

