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QCD at the LHC Unjrersicy

Essentially all physics at high-energy hadron
colliders are connected to the interactions of quarks
and gluons (small & large transferred momentum).

Hard processes (high-pt): well described by
perturbative QCD

Soft interactions (low-py): require non-
perturbative phenomenological models
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QCD at the LHC Flisgon

Essentially all physics at high-energy hadron
colliders are connected to the interactions of quarks
and gluons (small & large transferred momentum).

Hard processes (high-pt): well described by
perturbative QCD

Soft interactions (low-py): require non-
perturbative phenomenological models

2 Soft Interactions: Problems with strong coupling constant, o (Q?),
saturation effects,...

¢ Inelastic hadronic events are dominated by “soft” partonic
interactions.

< On average, inelastic hadron-hadron collisions have low transverse
energy, low multiplicity.

< Most pile-up events are (soft) inelastic collisions.
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Pile-up events
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Pile-up events
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Hadronic “soft” inelastic collisions A

of Glasgow

» Minbmune bras: experimentally defined to select events with the minimum
possible requirements to ensure an inelastic collision occurred.

Gtot = Oelas
Note: exact definition depends
on experiment (and analysis).
pp @ 7 TeV \é
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Hadronic “soft” inelastic collisions Py

» Minbmune bras: experimentally defined to select events with the minimum
possible requirements to ensure an inelastic collision occurred.

O,, =0

elas
Note: exact definition depends

on experiment (and analysis).

pp @ 7 TeV \é

Oc dif ~ 14wmb

da0r U parton showers (ISR/FSR)
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MC predictions for “soft” QCD: past & present [ieisst

2 Tuning/calibration of MC models have evolved considerably from the time of
the ATLAS Detector & Physics Performance TDR (1999..)).
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MC predictions for “soft” QCD: past & present B

¢ Tuning/calibration of MC models have evolved considerably from the time of
the ATLAS Detector & Physics Performance TDR (1999..)).

¢ Factors of ~2 were “accepted” as reasonable. Nowadays we’re ~10-20% in
most distributions!

Minimum bias distributions:

- — )| :12.5
o - (V. — ... PYTHIA6.122- A - — PHOJET 1.12
~ 6 CD_I_:.---"pp @ 18TEV (Run I QQ — - - PYTHIA 6.122 - Model4 ---- HERWIG 5.9
Z° A S — —— PYTHIA 5.724 - ATLAS ~ - ISAJET 7.32
< Z - _
o) —_—
4 -
- PYTHIA 6.122 - A -
B - - - PYTHIA 6.122 - Model4 n
2 — — PYTHIA 5.724 - ATLAS B
— - --.PHOJET 1.12 —
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- - .- ISAJET 7.32 B
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MC predictions for “soft” QCD: past & present e
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MC predictions for “soft” QCD: past & present [l

Note (l): there are simply too many
variations of MC tunes and models to be
covered in a single talk.

Note (ll): Typical changes in MC tunes
- PDF set

- MPI model

- Low pr cut-off

- ISR/FSR

- Colour reconnection

- Matter distribution profile

Details can be obtained from the relevant
references.
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MC predictions for “soft” QCD: past & present [iyest

PYTHLA

LHC data
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cee (taken from P. Skands - MPI@LHC2011)
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References to experimental results & MC (_)/(;1;1\@«-
predictions (and more...)

L Pc C U Sl 5Pl = R)S %)

LtHC PO\U}%]C3 Centre at CERN

http://Ipcc.web.cern.ch/LPCC/

» MC pLots:

“CERN-based website for Monte Carlo comparisons, intended as a simple
browsable repository of plots comparing HEP event generators to a wide variety of
available experimental data, mainly based on the RIVET analysis tool.”

http://mcplots.cern.ch/

I~
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“Minimum bias” events:

B Event display: pp collision at /s=900GeV

CATLAS
JL EXPERIMENT

2009-12-26, 10:03 CET

Run 141749, Event 40531%

Collision Event

Mip Natias wob comn ch AN DUSECE VTDISPLAY favents. il

web.cam.chVAtlas/public/EVTDISPLAY /fevents htm

- \
j - 3\;\,{ =
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B Event display: pp collision at +/s=7 TeV
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Elastic, Total and Inelastic cross-sections e

D

o, =983+0.25"+£2.8Y mb

Gele _ 83 mb (extrapol.) n 165 mb (measured) _ 248 + O.Z(Stat) il.Z(SYSt) mb

tat) +1.8 (syst)

=0 -0, = +0.6%

Glnel Gtot Gele 73 5 — 06 -1.3 mb

—~ 140

E 130 Ttot (red), Oinel (blue) and o) (green) N

N pp (PDG) «  ALICE _ 1 Oy (CMS) =

o pp (PDG) e TOTEM T 1 68.0 +2.0vst)
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. best COMPETE o fits s I s

S I VE - - - -114 - 1.52In5+0.130In? s PR 1 4.0 mb
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+ 6.9(extrap) mb

P 1 Ginel (ALICE) =
1 72.7 £ 1.1(model)
1 £5.10mimb
Iio5
Vs (GeV)
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Single and double diffractive cross-sections e
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Uniyersicy
(1) Nature of inelastic collisions:

non-diffractive & diffractive interactions '
» Challenges in measuring and modelling the different classes of interactions.

» Can be an issue in many measurements: affects trigger corrections.

» Contributes (significantly) to the uncertainty in measurements dominated by
low multiplicity (low-pr) event selection.

» Inelastic non-diffractive cross-section is used by some MC models as a
parameter determining the MPI rate to be simulated.

» Accurate description is necessary for pile-up simulation (luminosity is going to
continue increasing! There’s also the upgrade in the horizon...).

= - — — — — — —

e ——
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Charged particle density in n: §f University
Vs=900 GeV, 2.36 TeV and 7 TeV

& of Glasgow
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» Measurements at different c.m. energies are crucial for an accurate
understanding (prediction) of the evolution of inelastic hadronic processes.

NPr«>»
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Charged particle multiplicity: University
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Vs=900 GeV, 2.36 TeV and 7 TeV
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Charged particle multiplicity distributions 1 5 eon
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¢ Charged particle multiplicity distributions: high nch tail not described by MC tunes!
Problems also in low nch bins.
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Charged particle multiplicity distributions 1 5 eon
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¢ Charged particle multiplicity distributions: high nch tail not described by MC tunes!
Problems also in low nch bins.
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Charged particle multiplicity distributions
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¢ As low-pr particles are added to the measurements, MC models no longer describes
the data. Generated particles are, on average, harder than what we see in the data.
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(2) Particle production as a function of +/s:

Models can be tuned to measurements made at different +/s but
predictive power is still to be proven.

(3) Low-pt particle production:

Models tuned to measurements made with higher pt particles fail to
describe the low pT data.

& Similar conclusions are obtained from comparisons between UE
measurements and MC.
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. M University
Forward-backward correlation Gl

B Data 2010
¢ Measurement of the correlation between =TIV
charged particle multiplicities in the 0T
forward and backward regions of the 2
ATLAS detector. S 086
505
o
m 0.4
TR
. ((ny — (nyg))(ne — ()
fo 2 2 -2.5
VA = (ng))?) (e — (ne))?) |
100 MeV
7 259 903 ac\“”a'd“ rr:c‘,,>>_ 2
nl < 2.5
2 nrand ny,are the multiplicity (per event)
in a forward and backward pseudorapidity
intervals. S 0.9fF —=— Da —e— Pythia =
% : ATLAS Data 2010 ’ m:ia::\zog ]
o 0.8 vowes Pythia 6 Perugia2011
g8 eewees o IRT Pyihia g dC
¢ The data is corrected for detector-related P - Horwiges oy ]
effects that would reduce the correlation. S 0.6[ o npz2
= = - N P T | |n|<25 -
R L L —
@ - \S= e
¢ Latest MC tunes adequately capture the - 04F : : =
correlations observed in the data. 8 ‘:L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
° =
o 095 ! S rr el z
= 08t L | | | E
s 0 0.5 1 1.5 2 2.5
f A n
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Forward-backward correlation & of Glasgow
c F .
~ ] . o . - ATLAS —&— Data 2010 o Pyth!aeMCOO E
¢ FB momentum correlation (prr): Correlation f_f 08; emimon Paiie & Pasmgiearit
between forward and backward charged-particle s o070 e hiabdrdiny
summed transverse momentum. :h o — Herwig+s E
N - . P, 5)130 MeV -
E 0.5 : o ’l‘ —s ) il < 2.5 -
el (S Pk — (k)
fo :
VISPl — (SpDI(ph — (P2 g 1
© 1:‘“
S ool
= o8t | | £
) 0 0.5 1 1.5 2 . 2.5
¢ The minimum value, ptmin, of the transverse
momentum of the selected charged particles was
varied for the 7 TeV data.
; c . —-— 01 -
¢ As expected, the correlations fall rapidly as ptmin = 2 | ATLAS ::t: im Pron (GeV3 T 02 -
increases above a few hundred MeV, a feature also g 0.8 \s=7TeV mi<2.5 i
seen in the MC models (nhot shown). = . BEBYA
© 0.6 : ' 20
» Low ptmin: general tendency for a partonic string 2 - S ' 1 —
to fragment in a uniform way all along its length. %’.-_ 0.4 | _ -
» At higher ptmin: particles are more likely to be § 0.2 :
associated with jets, and there is no strong m &
correlation between a given jet and another jet at I :

any particular value of n.

-
- —
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Two-particle angular correlation G

¢ Measurement of two-particle angular correlations in
pseudorapidity () and azimuthal angle (¢) for charged particles.

¢ Observable is sensitive to the underlying mechanisms of soft particle production.
- correlations between final states can indicate a common origin of production.

- gives indication about multi-particle dynamics in heavy-ion collisions.

¢ Two-particle angular correlation is defined as:

((nen — 1) F' (nen, An, AP)) (e, — 1)
I (An, A¢) ch ch

R (An,A¢) =

| | . An, Ap O A0
Foreground (F): all particle pairs in 4@ (%@ ©

same event (correlated + uncorrelated

pairs) ‘QO@ o
/
/
/Q
| | An, A O
Background (B): particle pairs from e
different events (uncorrelated pairs) - Q0O @QQ
— 000
=0
£ arXiv:1203.3549 [hep-ex] (submitted to JHEP)
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Two-particle angular correlation & of Glasgow

Pythia6 AMBTZ2B
\4’§=7Tev,nch22
ATLAS Simulation

Data
\}§=7Tev,nch22

Pythia6 AMBT2B
Ns=7TeV, n,z20

“Near-side” correlations: sharp peak
at (An, Ap) = (0, 0) can be attributed
to high-pr processes.

“Away-side” corvelations: ridge at
A = 7t can be attributed to
momentum conservation.

Gaussian ridge: A = o decay of
particles with low-pr (decays of
resonances, strings or cluster
fragmentation).

MC models are able to predict structure seen in data BUT
fail to reproduce the strength of the correlations.

NPEr«<>»
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(a) CMS MinBias, p_>0.1GeV/c (b) CMS MinBias, 1.0GeV/c<pT<3.0GeV/c

~ =S
z o -14 //;.!'A"‘A\»&
iy

=
é\, s
Ly 4

The intermediate pr range in high multiplicity events
shows an unexpected effect: a clear and significant
“ridge”-like structure emerges at Ap = 0 extending to
|An| of at least 4 units. This is a novel feature of the
data which has never been seen in two-particle
correlation functions in pp or ppbar collisions.

T

¥

A. Moraes

NPBr«<»

R(A9)

R(A9)

R(A¢)

An identical analysis of high

University

of Glasgow

multiplicity events in PYTHIAS8 results
in correlation functions which do not
exhibit the extended ridge at Ap =0,
while all other structures of the
correlation function are qualitatively
reproduced.

[ N<35

[ 0.1GeV/e<p, <1.0GeV/e

e CMS pp
— PYTHIAS

1 1.0GeViesp, <2.0GeVic

1 2.0GeV/e<p <3.0GeV/c

1 3.0GeV/c<p, <4.0GeV

R(A9)
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(a) CMS MinBias, p_>0.1GeV/c (b) CMS MinBias, 1.0GeV/c<pT<3.0GeV/c
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“ridge”-like structure emerges at Ap = 0 extending to
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multiplicity events in PYTHIAS8 results
in correlation functions which do not
exhibit the extended ridge at Ap =0,
while all other structures of the
correlation function are qualitatively
reproduced.
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e CMS pp
— PYTHIAS

1 1.0GeViesp, <2.0GeVic

1 2.0GeV/e<p <3.0GeV/c

1 3.0GeV/c<p, <4.0GeV

R(A9)

Event Generators and Resummation, 29th May 2012 23



iie University

of Glasgow

Azimuthal ordering of charged hadrons

@ Charged particle measurements show limitations of phenomenological models

- Models cannot describe measured observables in all regions of the phase space.
- Some discrepancy can be reduced by tuning, but

- New formulation of certain components (e.g. fragmentation) is likely needed!

€ Two main hadronisation models used in multi-purpose MC generators:

- String (Lund) fragmentation model, e.g. PYTHIA, PHOJET

- Cluster model, e.g. HERWIG

@ Azimuthal ordering of charged hadrons:

- Provides a test of hadronisation models.

- Requires careful selection of the phase-space in order to test sensitivity to
hadronisation effects.

{‘7 \
NeBr-is

A.Moraes Event Generators and Resummation, 29th May 2012 24



University

: : : : g - ,
@ Spectral analysis of correlations between the longitudinal of Glasgow
and transverse components of charged hadrons

$1(5) = > _ %exp(i(ém—d)j))lz
J

eV event Flch

@ Measure power spectra in the following samples:

- “lnclustve”: pr > 100 MeV, veto events containing any track with pr> 10 GeV.

- “Low-pr enha weed”: pr > 100 MeV, veto events containing any track with
pt > 1 GeV.

- “Low-pr depleted”: pr > 500 MeV, veto events containing any track with
pt> 10 GeV.

Q Data corrected for detector inefficiencies and the measurement
iIs presented at particle level.
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Azimuthal ordering of charged hadrons B8 7 Ceon

Ineclusive sa mple

Low-pr depleted sample
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Y Too much correlation in typical MC, for high-pt charged particles (ight plot),
but good description of inclusive sample (ke plot).
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Azimuthal ordering of charged hadrons of Glasgoy
Low-pr emhanced sample Low-pr emhanced sample
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¢ Too little correlation for sample dominated by low-pr charged particles (eft plot).

< Modelling of diffractive events is a major source of discrepancy between

data and models.

¢ Extreme variation of model parameters cannot provide reasonable

description of data (ight plot).
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2 No significant difference between 0.9, 2.76 and 7 TeV
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(4) Correlations in high multiplicity events

- Long-range correlations which are still not well described by MC
models (several interpretations & ideas though...)

- Transverse sphericity is not described for high multiplicity events
either.

(5) Low-pT particle azimuthal ordering:

Models cannot describe the fragmentation structure seen in data.
Discrepancy appears to be “beyond tuning’!

New hadronisation models?
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The underlying event

» The underlying event: All particles from a
single particle collision except the process
of interest.

- Sometimes, the underlying event can also be defined
as everything in the collision except the hard process
(high-Q2).

@ UE characterised by activity in ¢ region
transverse to the leading particle (= highest pr
track or cluster)

@ Track-based measurement:

» charged particle component

@ Cluster-based measurement:

» Use energy depositions in calorimeters

associated to charged and neutral particles

»'A- : A
()
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hard process 4~ A0

toward
|AO|<60

transverse “._ .° transverse
60<]a0l<120° .77 T~ L 60<1A01<120

away
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The underlying event

» The underlying event: All particles from a
single particle collision except the process
of interest.

- Sometimes, the underlying event can also be defined
as everything in the collision except the hard process
(high-Q2).

@ UE characterised by activity in ¢ region
transverse to the leading particle (= highest pr
track or cluster)

@ Track-based measurement:

» charged particle component

@ Cluster-based measurement:

» Use energy depositions in calorimeters

associated to charged and neutral particles
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Process of interest (eg. high
pr jets, top-anti-top pair, Z
boson)

hard process 4~ A0

toward
|AO|<60

transverse “._ .° transverse
60<]a0l<120° .77 T~ L 60<1A01<120

away
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The underlying event & of Glasgow

» The underlying event: All particles from a
single particle collision except the process the underlying
of interest.

- Sometimes, the underlying event can also be defined
as everything in the collision except the hard process

(high-Q2).
. . .. . . Process of interest (eg. high
¥ UE characterised by activity in ¢ region Pr jets, top-anti-top pair, Z
. . —_ boson)
transverse to the leading particle (= highest pr

track or cluster) . N
ard process L

¢ Track-based measurement:

toward
|AO|<60

» charged particle component

fransverse *.__-” transverse
60<|A0l<120 .~ e 60<|A0l<120

@ Cluster-based measurement:

away
[AG|>120

» Use energy depositions in calorimeters
associated to charged and neutral particles
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Leading Charged Particle:
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Transverse Number Density
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» The number density in data is higher than predicted by any of the MC tunes (aiso observed

in comparisons to minimum bias densities).

» The difference is more significant at 7 TeV (energy extrapolation!). They get even
larger as low pT particles are added to the measurement.
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Leading Charged Particle: =Ly

Transverse Sum prt Density
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» The higher number density in data implies a higher pt density as well.

» The summed charged particle pt in the plateau characterises the mean
contribution of the underlying event to jet energies.
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Minimum bias vs. Underlying event = o lasg
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¢ For illustration, this figure presents the number density in the plateau of the Transverse
region for pt > 0.5 GeV (CDF at 1.8TeV also included) compared with dNch/dn at n=0 of
charged particles with pt > 0.5 GeV in minimum-bias events (scaled by 1/2r).

¢ The UE activity in the plateau region is more than a factor 2 larger than the dNch/dn.
Both can be fitted with a logarithmic dependence on s (a+b Ins). The relative increase
from 0.9 to 7TeV for the UE is larger than that for the dNch/dn: about 110% compared to
about 80%, respectively.
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Leading track jet:

Transverse Number Density
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» Comparing number densities for 900 GeV and 7 TeV measurements: crucial
information for a better understanding on how to model the energy extrapolation!
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Drell-Yan UE measurements

particle density
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» The UE activity as a function of the dimuon invariant mass (M) for events with ptH* < 56GeV
for charged particles having A < 120°.

» The dependence of the UE activity on the dimuon invariant mass is well described by PYTHIA and
HERWIG++ tunes derived from the leading jet/track approach, illustrating the universality of the UE
activity. The UE activity is observed to be independent of the dimuon invariant mass in the region above
40 GeV while a slow increase is observed with increasing transverse momentum of the dimuon system.
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Drell-Yan UE measurements
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ratio of energy and particle densities
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» Comparison of the UE activity measured in the hadronic and the DY events (around the Z
peak) in the transverse region as a function of prleadingiet and pt+H respectively.

» For ptH and prleadingiet > 10 GeV, DY events have a smaller particle density with a harder pr
spectrum compared to the hadronic events. This distinction is due to the different nature of
radiation in the hadronic and DY events. Drell-Yan events have only initial- state QCD
radiation initiated by quarks, which fragment into a smaller number of hadrons carrying a
larger fraction of the parent parton energy, whereas the hadronic events have both initial-
and final-state QCD radiation predominantly initiated by gluons with a softer fragmentation
into hadrons.
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Summary ® il

! Minimum bias and underlying measurements have been measured by LHC experiments at
different centre-of-mass energies.

» measurements are (typically) presented with well defined phase-space selection &
corrected back to “particle level” (i.e. directly comparable to MC predictions)

» new results on particle correlations expose strengths and weaknesses of MC models

1 Data - MC comparisons show there is a need to continue improving models/MC
tunings.

» new MC tunes using LHC data have already been produced. This benefits from
several observables as well as multiple points at different +/s.

» very useful for preparations for 2012 data taking (8 TeV).

-1 Challenges presented by the data:

» non-perturbative dynamics still very challenging: MPI, colour reconnection, etc.
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|. Nature of inelastic collisions: non-diffractive & diffractive interactions

» Diffraction: single and double diffractive interactions contribute to low nch regions.

)

NPpr«p»

A.Moraes Event Generators and Resummation, 29th May 2012 39



University
(_7/ ( ul;l\g( W

|. Nature of inelastic collisions: non-diffractive & diffractive interactions

» Diffraction: single and double diffractive interactions contribute to low nch regions.

Il. Particle production as a function of +/s: models can be tuned to measurements
made at different +/s but predictive power is still to be proven.

» Role of Multiple Partonic Interactions: how can we connect soft and hard
components?

Ner-»
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|. Nature of inelastic collisions: non-diffractive & diffractive interactions

» Diffraction: single and double diffractive interactions contribute to low nch regions.

Il. Particle production as a function of +/s: models can be tuned to measurements
made at different +/s but predictive power is still to be proven.

» Role of Multiple Partonic Interactions: how can we connect soft and hard
components?

lIl. Low-pT particle production: Models tuned to measurements made with higher pr
particles fail to describe the low pr data.
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|. Nature of inelastic collisions: non-diffractive & diffractive interactions

» Diffraction: single and double diffractive interactions contribute to low nch regions.

Il. Particle production as a function of +/s: models can be tuned to measurements
made at different +/s but predictive power is still to be proven.

» Role of Multiple Partonic Interactions: how can we connect soft and hard
components?

lIl. Low-pT particle production: Models tuned to measurements made with higher pr
particles fail to describe the low pt data.

V. Correlations in high multiplicity events: correlations still not well described by
MC models.
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|. Nature of inelastic collisions: non-diffractive & diffractive interactions

» Diffraction: single and double diffractive interactions contribute to low nch regions.

Il. Particle production as a function of +/s: models can be tuned to measurements
made at different +/s but predictive power is still to be proven.

» Role of Multiple Partonic Interactions: how can we connect soft and hard

components?

lIl. Low-pT particle production: Models tuned to measurements made with higher pr

particles fail to describe the low pt data.

V. Correlations in high multiplicity events: correlations still not well described by
MC models.

V. Low-pT particle azimuthal ordering: Models cannot describe the hadronisation
structure seen in data. Discrepancy appears to be “beyond tuning”!
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Extra materiad...
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Brief comment on MC tunes... & of Glasgow

B MCO09: ATLAS reference tune for PYTHIAG tune (“new” MPI model: pT ordered).
“Pre-LHC” tune!

@ AMBT1, AMBT2: PYTHIAG6 tune (“new” MPI model: pT ordered) developed by
ATLAS. Focus on minimum bias results for both 900GeV and 7 TeV.

@ AUET1, AUET2: PYTHIAG (from AUET2 and newer) and HERWIG+]JIMMY tunes
developed by ATLAS. Focus on underlying event results for both 900GeV and 7
TeV.

& DW: PYTHIAG tune (“old” MPI model: virtuality ordered) developed by CDF. Drell-Yan
CDF measurements

® PYTHIAS8: new diffraction model with harder component.

@ PHOJET: alternative model to the PYTHIA based tunes. PHOJET is based on
DPM.
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Minimum Bias Trigger Scintilator  £cieor
MBTS

S

S

Segmented into 16 counters on \
side.

Plastic scintillator planes connected
to photomultiplier tubes.

Highly efficient trigger on charged
particles.

MBTS is the primary Minimum Bias
trigger.

»2.1<|n|<3.8
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Minimum Bias Trigger Scintilator  JCuow
MBTS

“'-\\7 \
Segmented into 16 counters on each ==
side.

Collision Event at

Plastic scintillator planes connected | 7 TeV
to photomultiplier tubes.

Highly efficient trigger on charged
particles.

MBTS is the primary Minimum Bias

. —
trigger. WATLAS
JLEXPERIMEN
'
. } 2 o 1 < I n I < 3 o 8 http://atias.web.cem.ch/Atlas/public/EVTDISPLAY/events._html
< A
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Charged particle density in n:

Vs=900 GeV, 2.36 TeV and 7 TeV
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» Measurements at different c.m. energies are crucial for an accurate
understanding (prediction) of the evolution of inelastic hadronic processes.
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Azimuthal ordering of charged hadrons €Y o Glasgow
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arXiv:1203.0419 [hep-ex] (submitted to PRD)
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Number density ratio between 7 and 0.9 TeV in Transverse region Summed p_ratio between 7 and 0.9 TeV in Transverse region
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