

Matching @LO&NLO

Leif Lönnblad*

Department of Astronomy and Theoretical Physics Lund University

DESY 12.05.30

*Work done with Stefan Prestel, arXiv:1109.4829 [hep-ph]

Matching

Leif Lönnblad

Introduction

- Parton Showers
- Tree-level matching
- NLO matching

No Introduction

- Why matching and merging
- Tree-level matrix element generation
- NLO generation

Exclusive jet cross sections No-emission probabilities Unitarity

Parton Showers

- Exclusive final states
- (N)LL Resummation to all orders
- Soft and collinear approximation
- Crappy hard wide-angle emissions

4

- Unitary procedure
- Crappy total cross section

Parton Showers Exclusive jet cross sections No-emission probabilities Unitarity

Exclusive *n*-jet cross section, Parton Shower style

$$d\sigma_n^{ex} = F_0 |\mathcal{M}_0|^2 d\phi_0 \times \left[\prod_{i=1}^n \alpha_{\mathsf{S}} \frac{F_i}{F_{i-1}} P_i d\rho_i dz_i \Pi_{i-1} \right] \Pi_n(\rho_n, \rho_{\mathsf{MS}})$$

- $|\mathcal{M}_0|^2 d\phi_0$: Born-level ME and phase space.
- F_i: PDF's from both sides for the i.
- $P_i(\rho, z) d\rho dz \approx \frac{|\mathcal{M}_i|^2 d\phi_i}{|\mathcal{M}_i|^2 d\phi_i|} \equiv P_i^{ME}(z) d\rho dz$
- \triangleright ρ , z: Splitting variables. Assume ρ is a suitable jet scale.
- ρ_{MS} : jet resolution scale.
- $\blacktriangleright \prod_i (\rho_{i-1}, \rho_i)$: No-emission probabilities.
- Ignore running of $\alpha_{\rm S}$ and PDF's for now.

Exclusive jet cross sections No-emission probabilities Unitarity

No-emission probabilities

$$\Pi_{i}(\rho_{i},\rho_{i+1}) = \exp\left(-\int_{\rho_{i+1}}^{\rho_{i}} d\rho dz \,\alpha_{S} \frac{F_{i+1}}{F_{i}} P_{i+1}\right)$$

The probability of not having any splittings above the scale ρ_{i+1} starting the shower from the state *i* at scale ρ_i .

For initial-state radiation, distinguish from Sudakov factor

$$\Delta_i(\rho_i,\rho_{i+1}) = \frac{F_i(\rho_i)}{F_i(\rho_{i+1})} \Pi_i(\rho_i,\rho_{i+1})$$

(Webber's trick relating forward and backward evolution)

 Parton Showers
 Exclusive jet cross sections

 Tree-level matching
 No-emission probabilities

 NLO matching
 Unitarity

With the veto-algorithm it is easy to generate a hardest emission using the no-emission probabilities, even if the integrand is complicated and we have several possible processes.

Also, if we generate one emission (ρ, z) from a given state, *i*, starting from a maximum scale ρ_i

$$P(\rho < \rho_{i+1}) = \prod_i (\rho_i, \rho_{i+1})$$

Parton Showers	Exclusive jet cross sections
	No-emission probabilities
	Unitarity

In addition, if we get a $\rho > \rho_{i+1}$, we can continue generating another emission from state *i* below ρ (discarding the first one), and then another one, etc. The average number of emissions above ρ_{i+1} is then given by the exponent

$$\langle n \rangle = \int_{\rho_{i+1}}^{\rho_i} d\rho dz \, \alpha_S \frac{F_{i+1}}{F_i} P_{i+1} = -\log \prod_i (\rho_i, \rho_{i+1})$$

and

$$\langle n(n-1) \rangle = \left(\int_{\rho_{i+1}}^{\rho_i} d\rho dz \, \alpha_{\rm S} \frac{F_{i+1}}{F_i} P_{i+1} \right)^2$$

 Parton Showers
 Exclusive jet cross sections

 Tree-level matching
 No-emission probabilities

 NLO matching
 Unitarity

Fixed-order expansion of a parton shower

$$(\text{using } \mathcal{P}_{i} = \frac{F_{i}}{F_{i-1}}P_{i})$$

$$\frac{d\sigma_{0}^{\text{ex}}}{d\phi_{0}} = F_{0} |\mathcal{M}_{0}|^{2} \left[1 - \alpha_{S} \int_{\rho_{\text{MS}}}^{\rho_{0}} d\rho dz \mathcal{P}_{1} + \frac{\alpha_{S}^{2}}{2} \left(\int_{\rho_{\text{MS}}}^{\rho_{0}} d\rho dz \mathcal{P}_{1}\right)^{2}\right]$$

$$\frac{d\sigma_{1}^{\text{ex}}}{d\phi_{0}} = F_{0} |\mathcal{M}_{0}|^{2} \alpha_{S} \mathcal{P}_{1} d\rho_{1} dz_{1}$$

$$\times \left[1 - \alpha_{S} \int_{\rho_{1}}^{\rho_{0}} d\rho dz \mathcal{P}_{1} - \alpha_{S} \int_{\rho_{\text{MS}}}^{\rho_{1}} d\rho dz \mathcal{P}_{2}\right]$$

$$\frac{d\sigma_{2}}{d\phi_{0}} = F_{0} |\mathcal{M}_{0}|^{2} \alpha_{S}^{2} \mathcal{P}_{1} d\rho_{1} dz_{1} \mathcal{P}_{2} d\rho_{2} dz_{2} \Theta(\rho_{1} - \rho_{2})$$

Unitary to all orders in α_{S} .

ż

Leading-order tree-level matching CKKW(-L) Vincia

Tree-level matching

Tree-level matching

We now want to improve our parton shower.

The easiest thing is

$$P_i
ightarrow P_i^{ME} \equiv rac{\left|\mathcal{M}_i
ight|^2 d\phi_i}{\left|\mathcal{M}_{i-1}
ight|^2 d\phi_{i-1} d
ho dz}$$

This has been around quite a while in PYTHIA for the first splitting in some processes.

Leading-order tree-level matching CKKW(-L) Vincia

Leading-order tree-level matching

Tree-level matching

$$\frac{d\sigma_{0}^{ex}}{d\phi_{0}} = F_{0} |\mathcal{M}_{0}|^{2} \left[1 - \alpha_{S} \int_{\rho_{MS}}^{\rho_{0}} d\rho dz \,\mathcal{P}_{1}^{ME} + \frac{\alpha_{S}^{2}}{2} \left(\int_{\rho_{MS}}^{\rho_{0}} d\rho dz \,\mathcal{P}_{1}^{ME} \right)^{2} \right]$$

$$\frac{d\sigma_{1}^{ex}}{d\phi_{0}} = F_{0} |\mathcal{M}_{0}|^{2} \alpha_{S} \mathcal{P}_{1}^{ME} d\rho_{1} dz_{1}$$

$$\times \left[1 - \alpha_{S} \int_{\rho_{1}}^{\rho_{0}} d\rho dz \,\mathcal{P}_{1}^{ME} - \alpha_{S} \int_{\rho_{MS}}^{\rho_{1}} d\rho dz \,\mathcal{P}_{2} \right]$$

$$\frac{d\sigma_{2}}{d\phi_{0}} = F_{0} |\mathcal{M}_{0}|^{2} \alpha_{S}^{2} \mathcal{P}_{1}^{ME} d\rho_{1} dz_{1} \mathcal{P}_{2} d\rho_{2} dz_{2} \Theta(\rho_{1} - \rho_{2})$$

Still unitary to all orders of α_{S} . We can decrase ρ_{MS} to the non-perturbative boundary ρ_{cut} .

Matching

CKKW(-L)

For higher jet-multiplicities things get a bit more complicated.

It is solved in CKKW(-L) by generating inclusive few-jet samples according to exact tree-level $|\mathcal{M}_n|^2$ using some merging scale ρ_{MS} .

These are then made exclusive by reweighting no-emission probabilities (in CKKW-L generated by the shower itself)

Also fix the running of α_{S} and PDF's.

Add normal shower emissions below $\rho_{\rm MS}$.

Add all samples together.

Parton Showers	Leading-order tree-level matching
Tree-level matching	CKKW(-L)
NLO matching	Vincia

- Dependence on the merging scale cancels to the precision of the shower.
- If the merging scale is not defined in terms of the shower ordering variable, we need vetoed and truncated showers.
- Breaks the unitarity of the shower.

Leading-order tree-level matching CKKW(-L)

Higher-order tree-level matching

Tree-level matching

$$\begin{aligned} \frac{d\sigma_0^{ex}}{d\phi_0} &= F_0 \left| \mathcal{M}_0 \right|^2 \left[1 - \alpha_S \int_{\rho_{MS}}^{\rho_0} d\rho dz \, \mathcal{P}_1^{ME} + \frac{\alpha_S^2}{2} \left(\int_{\rho_{MS}}^{\rho_0} d\rho dz \, \mathcal{P}_1^{ME} \right)^2 \right] \\ \frac{d\sigma_1^{ex}}{d\phi_0} &= F_0 \left| \mathcal{M}_0 \right|^2 \alpha_S \mathcal{P}_1^{ME} d\rho_1 dz_1 \\ & \times \left[1 - \alpha_S \int_{\rho_1}^{\rho_0} d\rho dz \, \mathcal{P}_1^{ME} - \alpha_S \int_{\rho_{MS}}^{\rho_1} d\rho dz \, \mathcal{P}_2 \right] \\ \frac{d\sigma_2}{d\phi_0} &= F_0 \left| \mathcal{M}_0 \right|^2 \alpha_S^2 \mathcal{P}_1^{ME} d\rho_1 dz_1 \mathcal{P}_2^{ME} d\rho_2 dz_2 \Theta(\rho_1 - \rho_2) \end{aligned}$$

NOT unitary. Gives aritficial dependence of ρ_{MS} .

Matching

ż

Leading-order tree-level matching CKKW(-L) Vincia

Higher-order tree-level matching

Tree-level matching

$$\frac{d\sigma_0^{ex}}{d\phi_0} = F_0 \left| \mathcal{M}_0 \right|^2 \left[1 - \alpha_S \int_{\rho_{MS}}^{\rho_0} d\rho dz \, \mathcal{P}_1^{ME} + \frac{\alpha_S^2}{2} \left(\int_{\rho_{MS}}^{\rho_0} d\rho dz \, \mathcal{P}_1^{ME} \right)^2 \right] \\
\frac{d\sigma_1^{ex}}{d\phi_0} = F_0 \left| \mathcal{M}_0 \right|^2 \alpha_S \mathcal{P}_1^{ME} d\rho_1 dz_1 \\
\times \left[1 - \alpha_S \int_{\rho_1}^{\rho_0} d\rho dz \, \mathcal{P}_1^{ME} - \alpha_S \int_{\rho_{MS}}^{\rho_1} d\rho dz \, \mathcal{P}_2 \right] \\
\frac{d\sigma_2}{d\phi_0} = F_0 \left| \mathcal{M}_0 \right|^2 \alpha_S^2 \mathcal{P}_1^{ME} d\rho_1 dz_1 \mathcal{P}_2^{ME} d\rho_2 dz_2 \Theta(\rho_1 - \rho_2)$$

NOT unitary. Gives aritficial dependence of ρ_{MS} .

Can be alleviated for some processes in PYTHIA

Matching

Leif Lönnblad

ż

р_{Т,1}

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Matching

Leif Lönnblad

Parton Showers Leading-o Tree-level matching CKKW(-L NLO matching Vincia	order tree-level matching _)
--	---------------------------------

Mature procedure. Available in

- (HERWIG++)
- SHERPA
- PYTHIA8
- Also MLM-procedure, ALPGEN + HERWIG/PYTHIA

	Leading-order tree-level matching
Tree-level matching	CKKW(-L)
	Vincia

Vincia

$$\frac{d\sigma_0^{ex}}{d\phi_0} = F_0 |\mathcal{M}_0|^2 \left[1 - \alpha_S \int_{\rho_{MS}}^{\rho_0} d\rho dz \, \mathcal{P}_1^{ME} + \frac{\alpha_S^2}{2} \left(\int_{\rho_{MS}}^{\rho_0} d\rho dz \, \mathcal{P}_1^{ME} \right)^2 \right] \\
\frac{d\sigma_1^{ex}}{d\phi_0} = F_0 |\mathcal{M}_0|^2 \, \alpha_S \mathcal{P}_1^{ME} d\rho_1 dz_1 \\
\times \left[1 - \alpha_S \int_{\rho_1}^{\rho_0} d\rho dz \, \mathcal{P}_1^{ME} - \alpha_S \int_{\rho_{MS}}^{\rho_1} d\rho dz \, \mathcal{P}_2^{ME} \right] \\
\frac{d\sigma_2}{d\phi_0} = F_0 |\mathcal{M}_0|^2 \, \alpha_S^2 \mathcal{P}_1^{ME} d\rho_1 dz_1 \mathcal{P}_2^{ME} d\rho_2 dz_2 \Theta(\rho_1 - \rho_2)$$

Unitarity restored $\rho_{MS} \rightarrow \rho_{cut}$. See next talk by Juan.

·W

< D > < P</p>

	POWHEG
	MC@NLO
NLO matching	Multi-jet NLO matching

Why worry about unitarity when cross section anyway is only leading order?

Parton Showers get many shapes of observables right. Maybe it is enough to just calculate a NLO *K*-factor

$$K_0 = \frac{\int d\sigma_0^{NLO}}{\int d\sigma_0^{LO}}$$

But we want to do better than that.

POWHEG MC@NLO Multi-jet NLO matching

NLO matching: POWHEG

Let's calculate a phase-space dependent K-factor:

$$\mathcal{K}(\phi_0) = rac{d\sigma_0^{NLO}}{d\sigma_0^{LO}}$$

and then use the ME-corrected splitting function in our parton shower, $P_i \rightarrow P_i^{ME}$.

	POWHEG
	MC@NLO
NLO matching	Multi-jet NLO matching

POWHEG

$$\frac{d\sigma_{0}^{ex}}{d\phi_{0}} = \mathcal{K}(\phi_{0})F_{0}|\mathcal{M}_{0}|^{2}\left[1-\alpha_{S}\int_{\rho_{MS}}^{\rho_{0}}d\rho dz \mathcal{P}_{1}^{ME} + \frac{\alpha_{S}^{2}}{2}\left(\int_{\rho_{MS}}^{\rho_{0}}d\rho dz \mathcal{P}_{1}^{ME}\right)^{2}\right]$$

$$\frac{d\sigma_{1}^{ex}}{d\phi_{0}} = \mathcal{K}(\phi_{0})F_{0}|\mathcal{M}_{0}|^{2}\alpha_{S}\mathcal{P}_{1}^{ME}d\rho_{1}dz_{1}$$

$$\times \left[1-\alpha_{S}\int_{\rho_{1}}^{\rho_{0}}d\rho dz \mathcal{P}_{1}^{ME} - \alpha_{S}\int_{\rho_{MS}}^{\rho_{1}}d\rho dz \mathcal{P}_{2}\right]$$

$$\frac{d\sigma_{2}}{d\phi_{0}} = \mathcal{K}(\phi_{0})F_{0}|\mathcal{M}_{0}|^{2}\alpha_{S}^{2}\mathcal{P}_{1}^{ME}d\rho_{1}dz_{1}\mathcal{P}_{2}d\rho_{2}dz_{2}\Theta(\rho_{1}-\rho_{2})$$

$$\rho_{MS} \rightarrow \rho_{cut}$$

	POWHEG
	MC@NLO
NLO matching	Multi-jet NLO matching

It is not always possible to project the real emission ME down to a Born-level phase space point. These are instead added as a separate contribution to the one-jet cross section, which is not exponentiated in the no-emission probability.

In general one can shuffle non-singular pieces of the real emission ME to the non-exponentiated contribution to the one-jet contribution. This will modify the *K*-factor, but the end result will still be valid to NLO.

NUM CAPACITY

POWHEG MC@NLO Multi-jet NLO matching

NLO matching: MC@NLO

Here we shuffle everything except the Parton Shower splitting function to the non-exponentiated one-jet contribution.

In my Parton Shower language this corresponds to calculating a phase space dependent K-factor using only the Parton Shower splitting, rather than the whole full real-emission ME.

	POWHEG
	MC@NLO
NLO matching	Multi-jet NLO matching

MC@NLO

$$\begin{aligned} \frac{d\sigma_{0}^{ex}}{d\phi_{0}} &= \mathcal{K}_{S}(\phi_{0})\mathcal{F}_{0}\left|\mathcal{M}_{0}\right|^{2}\left[1-\alpha_{S}\int_{\rho_{MS}}^{\rho_{0}}d\rho dz \mathcal{P}_{1}+\frac{\alpha_{S}^{2}}{2}\left(\int_{\rho_{MS}}^{\rho_{0}}d\rho dz \mathcal{P}_{1}\right)^{2}\right] \\ \frac{d\sigma_{1}^{ex}}{d\phi_{0}} &= \mathcal{K}_{S}(\phi_{0})\mathcal{F}_{0}\left|\mathcal{M}_{0}\right|^{2}\alpha_{S}\mathcal{P}_{1}d\rho_{1}dz_{1}\left[1-\alpha_{S}\int_{\rho_{1}}^{\rho_{0}}d\rho dz \mathcal{P}_{1}-\alpha_{S}\int_{\rho_{MS}}^{\rho_{1}}d\rho dz \mathcal{P}_{2}\right] \\ &+\alpha_{S}\left(\mathcal{P}_{1}^{ME}-\mathcal{P}_{1}\right)d\rho_{1}dz_{1}\left[1-\alpha_{S}\int_{\rho_{MS}}^{\rho_{1}}d\rho dz \mathcal{P}_{2}\right] \\ \frac{d\sigma_{2}}{d\phi_{0}} &= \mathcal{F}_{0}\left|\mathcal{M}_{0}\right|^{2}\alpha_{S}^{2}\left(\mathcal{K}_{S}(\phi_{0})\mathcal{P}_{1}+\mathcal{P}_{1}^{ME}-\mathcal{P}_{1}\right)d\rho_{1}dz_{1}\mathcal{P}_{2}d\rho_{2}dz_{2}\Theta(\rho_{1}-\rho_{2}) \\ \rho_{MS}\rightarrow\rho_{cut} \\ \text{Note that }\mathcal{P}_{1}^{ME}-\mathcal{P}_{1} \text{ may become negative.} \end{aligned}$$

(日)

MC@NLO and POWHEG are equivalent to NLO.

They both resum whatever the Paston Shower resums (to LL or NLL).

But they differ in finite terms. In particular POWHEG gets an extra boost in the two-jet cross section as the *K*-factor multiplies everything.

Also differences depending which shower is added. (PYTHIA, HERWIG, SHERPA)

Can be combined with CKKW (MENLOPS)

Let's try to also correct the one-jet cross section to NLO.

For this we go back to the CKKW(-L) matching using a merging scale $\rho_{\rm MS}$ to separate the ME and PS region.

Let's first look at the 0-jet exclusive cross section in more detail.

$$\frac{d\sigma_{0}^{ex}}{d\phi_{0}} = K_{0}F_{0}|\mathcal{M}_{0}|^{2}\Pi_{0}(\rho_{0},\rho_{MS})$$

$$= K_{0}F_{0}|\mathcal{M}_{0}|^{2}\left[1 - \alpha_{S}(\rho)\int_{\rho_{MS}}^{\rho_{0}}d\rho dz \frac{F_{1}(\rho)}{F_{0}(\rho)}P_{1} + \dots\right]$$

Matching

How do we get a NLO exclusive cross section?

Generate a Born-level sample point using POWHEG (switching off the first emission).

$$rac{d\sigma_0^{NLO}}{d\phi_0} = \mathcal{K}(\phi_0) \mathcal{F}_0(\mu_{\mathcal{F}}) \left| \mathcal{M}_0
ight|^2$$

Generate a one-jet sample using the tree-level ME

$$\frac{d\sigma_{1}}{d\phi_{0}} = F_{0}(\mu_{F}) \left|\mathcal{M}_{0}\right|^{2} \alpha_{S}(\mu_{R}) \int_{\rho_{MS}}^{\rho_{0}} \frac{F_{1}(\mu_{F})}{F_{0}(\mu_{F})} P_{1}^{ME}$$

But recluster it to a 0-jet state. This corresponds directly to the α_S term in the PS no-emission probability.

Matching

How do we get a NLO exclusive cross section?

Generate a Born-level sample point using POWHEG (switching off the first emission).

$$rac{d\sigma_0^{NLO}}{d\phi_0} = \mathcal{K}(\phi_0) \mathcal{F}_0(\mu_{\mathcal{F}}) \left| \mathcal{M}_0
ight|^2$$

Generate a one-jet sample using the tree-level ME

$$\frac{d\sigma_1}{d\phi_0} = F_0(\mu_F) \left| \mathcal{M}_0 \right|^2 \alpha_{\mathcal{S}}(\mu_R) \int_{\rho_{MS}}^{\rho_0} \frac{F_1(\mu_F)}{F_0(\mu_F)} P_1^{ME}$$

But recluster it to a 0-jet state. This corresponds directly to the α_{S} term in the PS no-emission probability.

Matching

NL_{SP}^3

If we now take the CKKW-L sample but reweight it by subtracting

$$F_{0} |\mathcal{M}_{0}|^{2} \left[\mathcal{K}_{0} \Pi_{0}(\rho_{0}, \rho_{\text{MS}}) - \mathcal{K}_{0} + \alpha_{S}(\mu_{R}) \int_{\rho_{\text{MS}}}^{\rho_{0}} d\rho dz \frac{F_{1}(\mu_{F})}{F_{0}(\mu_{F})} P_{1} \right]$$

Then we add the POWHEG sample and the reclustered 1-jet sample Only adding a parton shower below $\rho_{\rm MS}.$

The 1-jet and higher order exclusive CKKW-samples stays the same.

We then get something which is correct to NLO but with all higher order terms taken from the Parton Shower.

	POWHEG
	MC@NLO
NLO matching	Multi-jet NLO matching

\mathbf{NL}_{SP}^3

$$\frac{d\sigma_0^{\text{ex}}}{d\phi_0} = F_0 |\mathcal{M}_0|^2 \left[K(\phi_0) - \alpha_S \int_{\rho_{\text{MS}}}^{\rho_0} d\rho dz \, \mathcal{P}_1^{\text{ME}} + \frac{\alpha_S^2}{2} K_0 \left(\int_{\rho_{\text{MS}}}^{\rho_0} d\rho dz \, \mathcal{P}_1 \right)^2 \right]$$

$$\frac{d\sigma_1^{\text{ex}}}{d\phi_0} = F_0 |\mathcal{M}_0|^2 K_0 \alpha_S \mathcal{P}_1^{\text{ME}} d\rho_1 dz_1$$

$$\times \left[1 - \alpha_S \int_{\rho_1}^{\rho_0} d\rho dz \, \mathcal{P}_1 - \alpha_S \int_{\rho_{\text{MS}}}^{\rho_1} d\rho dz \, \mathcal{P}_2 \right]$$

$$\frac{d\sigma_2}{d\phi_0} = F_0 |\mathcal{M}_0|^2 K_0 \alpha_S^2 \mathcal{P}_1^{\text{ME}} d\rho_1 dz_1 \mathcal{P}_2^{\text{ME}} d\rho_2 dz_2 \Theta(\rho_1 - \rho_2)$$

Matching

POWHEG MC@NLO Multi-jet NLO matching

Matching

Leif Lönnblad

Lund University

A* SIG

RVMO

Matching

Leif Lönnblad

	POWHEG
	MC@NLO
NLO matching	Multi-jet NLO matching

Now let's go to the 1-jet exclusive cross section in CKKW-L

$$\begin{aligned} \frac{d\sigma_{1}^{ex}}{d\phi_{0}} &= F_{1}(\mu_{F}) \left|\mathcal{M}_{0}\right|^{2} P_{1}^{ME} \alpha_{S}(\mu_{R}) d\rho_{1} dz_{1} \\ &\times K \frac{F_{0}(\mu_{F})}{F_{1}(\mu_{F})} \frac{F_{1}(\rho_{1})}{F_{0}(\rho_{1})} \frac{\alpha_{S}(\rho_{1})}{\alpha_{S}(\mu_{R})} \Pi_{0}(\rho_{0},\rho_{1}) \Pi_{1}(\rho_{1},\rho_{MS}) \\ &= F_{1}(\mu_{F}) \left|\mathcal{M}_{0}\right|^{2} P_{1}^{ME} \alpha_{S}(\mu_{R}) d\rho_{1} dz_{1} \\ &\times \left[K + A\alpha_{S}(\mu_{R}) + B\alpha_{S}(\mu_{R}) - \alpha_{S}(\mu_{R}) \int_{\rho_{1}}^{\rho_{0}} d\rho dz \frac{F_{1}(\mu_{F})}{F_{0}(\mu_{F})} P_{1} - \alpha_{S}(\mu_{R}) \int_{\rho_{MS}}^{\rho_{1}} d\rho dz \frac{F_{2}(\mu_{F})}{F_{1}(\mu_{F})} P_{2}\right] + \mathcal{O}\left(\alpha_{S}^{2}(\mu_{R})\right) \end{aligned}$$

A and B can be calculated from the leading order running of α_s and the PDF's.

	POWHEG
	MC@NLO
NLO matching	Multi-jet NLO matching

Again we get the 1-jet NLO inclusive sample from POWHEG (using $\rho_{\rm MS}$ as cutoff) and make it exclusive by subtracting the reclustered 2-jet tree-level ME

$$\frac{d\sigma_{2}^{\text{rec}}}{d\phi_{0}} = F_{0}(\mu_{\text{F}}) \left|\mathcal{M}_{0}\right|^{2} \alpha_{\text{S}}^{2}(\mu_{\text{R}}) \frac{F_{1}(\mu_{\text{F}})}{F_{0}(\mu_{\text{F}})} P_{1}^{\text{ME}} d\rho_{1} dz_{1} \int_{\rho_{\text{MS}}}^{\rho_{0}} \frac{F_{2}(\mu_{\text{F}})}{F_{1}(\mu_{\text{F}})} P_{2}^{\text{ME}}$$

(Note that this gives both ordered and un-ordered emissions)

	POWHEG
	MC@NLO
NLO matching	Multi-jet NLO matching

- O-jet LO sample, reweighted with subtracted CKKW
- + 0-jet NLO sample.
- 1-jet LO sample, reclustered to 0-jet
- 1-jet LO sample, reweighted with subtracted CKKW
- + 1-jet NLO sample.
- 2-jet LO sample, reclustered to 1-jet
- 2-jet LO sample, reweighted with CKKW

40

60

80

• • • • • • • • • • •

100

Matching

1.0·10⁻¹⁰

20

NL_{SP}^{3} summary

- Has been implemented in PYTHIA8, but a lot more testing to be done.
- A bit complicated with many samples to be combined.
- Lots of technical details omitted here.
- There are some non-trivial ρ_{MS} dependencies left which may be large (α²_S term in 0-jet contribution).
- Can be generalized to higher jet multiplicities.
- In principle we can go to NNLO 0-jet (need to recluster 2-jet ME twice).

	POWHEG
	MC@NLO
NLO matching	Multi-jet NLO matching

Summary

- We need to improve the precision of our Parton Showers
- The distribution of mupltiple hard jets needs ME corrections
- The total cross sections needs to be NLO
- Multi-jet cross sections should also be NLO
- State-of-the-art (MLM, CKKW(-L), MC@NLO, POWHEG) works OK.
- Soon we will have multi-jet matching to NLO. (see also arXiv:1108.0909)

	POWHEG
	MC@NLO
NLO matching	Multi-jet NLO matching

Matching