# Herwig++ @ NLO

#### Simon Plätzer

DESY Theory Group



with contributions from Ken Arnold, Stefan Gieseke, Jan Kotanski, Malin Sjödahl, Martin Stoll

# A bit of history

A long history of NLO matrix elements in Herwig++.

One of the first generators to provide POWHEG matching. Now a bunch of builtin processes available.

So far: handmade. But full truncated showering.

This talk: change of paradigm to automation. Also optional shower and different matching strategies  $\rightarrow$  systematics.

[Herwig++ 2.6 release, arXiv:1205.4902]

# Outline

- The Matchbox NLO framework
- Dipole shower MC@NLO
- Which POWHEG?
- Adaptive sampling of Sudakov-type densities
- Some results
- Conclusions and outlook

# The Matchbox NLO framework

[SP & S. Gieseke, arXiv:1109.6256 and work in progress]

A framework to automatically assemble NLO calculations. Includes matching to showering.

Need external code to deliver tree level and one loop amplitudes. But not more.

Behaves just as plain Herwig++.

No separate codes to run, no intermediate event files.

# Matchbox in a nutshell

Generic interfaces:

- phasespace generation
- squared/correlated matrix elements
- colour subamplitudes and colour bases

Built in (behind these interfaces):

- multi channel phasespace
- simple colour sturctures, general case in progress

Then assembles full-fledged NLO calculation: Automated dipole subtraction and integrated dipoles.

Many things behind the scenes:

(Tree) diagram generation, caching, spinor helicty helpers ...

# Matchbox dipole subtraction

Use diagram information to determine dipoles.

- Look at mergings at external legs.
- Match to Born diagrams: gives assignment of tilde kinematics.

Need colour/spin correlated matrix elements:

- Either directly from external code.
- Or interface colour subamplitudes.

Simple colour structures built in.

General case from ColorFull package.

- Backbone for subleading-*N* improved showers [M.

[M. Sjödahl, SP - arXiv:1201.0260]

# Matchbox dipole subtraction

All massless dipoles and insertion operators available.

Various conventions for  $\epsilon$ -expansions supported, also CDR and DR. Massive ones in progress. [M. Stoll, diploma thesis KIT 2012]

Validated for several processes.

Here  $pp \rightarrow \text{jets}$ , amplitudes from nlojet++.



# Matchbox phasespace performance

Use diagram information to generate phase space as well: Multi channel, map out structures topology by topology.



Outperforms VBFNLO builtin phasespace.

Fixed-order expansion of NLO+PS: double counting evident

$$\sigma[u] = \int_{n} u(p_{n}) d\sigma^{(n,0)}(p_{n}) + \alpha_{s} \int_{n} u(p_{n}) \left[ d\sigma^{(n,1)}(p_{n}) + \int_{1} d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right]_{\epsilon=0} + \alpha_{s} \int_{n+1} \left[ -u(p_{n}) dP(p_{n+1}|p_{n}) - u(p_{n}) d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right] + \alpha_{s} \int_{n+1} \left[ u(p_{n+1}) d\sigma^{(n+1,0)}(p_{n+1}) + u(p_{n+1}) dP(p_{n+1}|p_{n}) \right]$$

Matched calculation: subtract double counting

$$\sigma[u] = \int_{n} u(p_{n}) d\sigma^{(n,0)}(p_{n}) + \alpha_{s} \int_{n} u(p_{n}) \left[ d\sigma^{(n,1)}(p_{n}) + \int_{1} d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right]_{\epsilon=0} + \alpha_{s} \int_{n+1} \left[ u(p_{n}) dP(p_{n+1}|p_{n}) - u(p_{n}) d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right] + \alpha_{s} \int_{n+1} \left[ u(p_{n+1}) d\sigma^{(n+1,0)}(p_{n+1}) - u(p_{n+1}) dP(p_{n+1}|p_{n}) \right]$$

MC@NLO type: tedious (basically redo NLO calculation). [Webber, Frixione, '02-]

$$\sigma[u] = \int_{n} u(p_{n}) d\sigma^{(n,0)}(p_{n}) + \alpha_{s} \int_{n} u(p_{n}) \left[ d\sigma^{(n,1)}(p_{n}) + \int_{1} d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right]_{\epsilon=0} + \alpha_{s} \int_{n+1} \left[ u(p_{n}) dP(p_{n+1}|p_{n}) - u(p_{n}) d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right] + \alpha_{s} \int_{n+1} \left[ u(p_{n+1}) d\sigma^{(n+1,0)}(p_{n+1}) - u(p_{n+1}) dP(p_{n+1}|p_{n}) \right]$$

MC@NLO made easy:  $dP(p_{n+1}|p_n) = d\sigma_A^{(n+1,0)}(p_{n+1})$ 

$$\begin{aligned} \sigma[u] &= \int_{n} u(p_{n}) d\sigma^{(n,0)}(p_{n}) \\ &+ \alpha_{s} \int_{n} u(p_{n}) \left[ d\sigma^{(n,1)}(p_{n}) + \int_{1} d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right]_{\epsilon=0} \\ &+ \alpha_{s} \int_{n+1} \left[ u(p_{n}) d\sigma^{(n+1,0)}_{A}(p_{n+1}) - u(p_{n}) d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right] \\ &+ \alpha_{s} \int_{n+1} \left[ u(p_{n+1}) d\sigma^{(n+1,0)}(p_{n+1}) - u(p_{n+1}) d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right] \end{aligned}$$

1

POWHEG type: 
$$\mathrm{d}P(p_{n+1}|p_n) = \mathrm{d}\sigma^{(n+1,0)}(p_{n+1})$$
 [Nason, '04-]

$$\sigma[u] = \int_{n} u(p_{n}) d\sigma^{(n,0)}(p_{n}) + \alpha_{s} \int_{n} u(p_{n}) \left[ d\sigma^{(n,1)}(p_{n}) + \int_{1} d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right]_{\epsilon=0} + \alpha_{s} \int_{n+1} \left[ u(p_{n}) d\sigma^{(n+1,0)}(p_{n+1}) - u(p_{n}) d\sigma^{(n+1,0)}_{A}(p_{n+1}) \right] + \alpha_{s} \int_{n+1} \left[ u(p_{n+1}) d\sigma^{(n+1,0)}(p_{n+1}) - u(p_{n+1}) d\sigma^{(n+1,0)}(p_{n+1}) \right]$$

Matching greatly simplified, if shower uses subtraction terms.

Use Herwig++ dipole shower.

[based on SP, S. Gieseke - arXiv:0909.5593]

Matching will be exact only up to colour suppressed terms. Cured by subleading-N improved shower, running in the same framework.

[cf independent approach by Sherpa]

# Which POWHEG?

Matchbox can as well turn NLO automatically into POWHEG matching. There's actually a family of POWHEG matchings:

- Paritioning of the real emission

$$|\mathcal{M}_R|^2 = \sum_i \frac{w_i}{\sum_j w_j} |\mathcal{M}_R|^2$$

Natural to use dipoles or splitting functions. Dipoles without cuts, not the subtraction terms  $(0/0 \dots)$ 

- Splitting of real emission into singular and finite terms

$$|\mathcal{M}_R|^2 = \frac{\mathrm{d}\sigma_B}{\mathrm{d}\sigma_B + \mathrm{d}\sigma_H} |\mathcal{M}_R|^2 + \frac{\mathrm{d}\sigma_H}{\mathrm{d}\sigma_B + \mathrm{d}\sigma_H} |\mathcal{M}_R|^2$$

 ${
m d}\sigma_{H}\sim p_{\perp}^{lpha}$ ; also allows to get rid of instabilities in PDF ratios.

#### Adaptive sampling of Sudakov-type densities

We frequently need to draw q and a number of variables z from

$$\frac{\mathrm{d}S_P(\mu, q|Q; z; \xi)}{\mathrm{d}q \, \mathrm{d}^n z} = \Delta_P(\mu|Q; \xi)\delta(q-\mu) + \theta(Q-q)\theta(q-\mu)P(q; z; \xi)\Delta_P(q|Q; \xi)$$

with

$$\Delta_P(q|Q;\xi) = \exp\left(-\int_q^Q \int P(k;z;\xi) \mathrm{d}^n z \; \mathrm{d}k
ight) \; .$$

For some (floating) hard scale Q. And a potentially big number of parameters  $\xi$ .

# Adaptive sampling of Sudakov-type densities

Dealt with by the Sudakov veto algorithm.

Can also be extended to non-positive kernels P. [SP & M. Sjödahl, EPJ Plus 127 (2012) 26]

But requires an overestimate R very close to P for all  $(q, z, \xi)$ . Up to know figured out by hand.

This may neither be 'portable' nor most efficient.

 $\rightarrow$  Use adaptive methods.

[Very much motivated by ACDC (L. Lönnblad) and Foam (S. Jadach et al.)]

# The ExSample library

[SP, EPJ C72 (2012) 1929]

Get a glimpse on P from the first few points, then refine. Organize in a binary tree of sub-hypercubes in  $(q, z, \xi)$  space.

Refine by splitting hypercubes  $\rightarrow$  fractal structure. Determine new splits to optimize overall performance.

Note that the 'first glimpse' will not yield the true maximum. Compensation needed for errornous overestimates.

# The ExSample library



# The ExSample library



Proof of concept: Simple processes.

 $e^+e^-$ , DIS, Drell-Yan

[SP, S. Gieseke - arXiv:1109.6256]

Separate LO and NLO tunes  $\rightarrow$  understand systematics.

- Reasonable description of data.
- Apart from normalization marginal improvements at NLO.
- $\alpha_{\it s}$  determined more precisely at NLO.
- NLO pushes IR cutoff to smaller values
  - $\rightarrow$  better modelling of perturbative dynamics

Proof of concept: Simple processes.

#### $e^+e^-$ , DIS, Drell-Yan

#### [SP, S. Gieseke - arXiv:1109.6256]



# Matchbox/VBFNLO

[K. Arnold]

#### H + 2 jets with Matchbox MC@NLO



VBF Z + 2 jets, W + 2 jets in progress.

#### Conclusions and outlook

- NLO well established within  ${\sf Herwig}{++}$
- Various specialized POWHEG implementations
- Matchbox provides full-fledged NLO framework
  - $\rightarrow$  proof of concept with simple processes
  - $\rightarrow$  target now at more complicated processes
  - $\rightarrow$  switch between MC@NLO and POWHEG for systematics
- Further related developments
  - $\rightarrow$  dipole shower as alternative shower  $\rightarrow$  systematics
  - $\rightarrow$  subleading N improved showering vs. MC@NLO
  - $\rightarrow$  merging NLOs  $\ldots$

# Herwig++ @ NLO

Simon Plätzer

DESY Theory Group

