NLO+PS matching methods and systematic uncertainties

Marek Schönherr

Institute for Particle Physics Phenomenology

DESY, 30/05/2012

arXiv:1111.1220, arXiv:1201.5882 JHEP04(2011)024, JHEP08(2011)123^{*} LHCphenOnet

Contents

1 [NLO+PS formalism](#page-5-0)

2 [Full-colour parton showering](#page-17-0)

8 [Results](#page-22-0)

4 [Associated uncertainties and improved matching](#page-29-0)

6 [Conclusions](#page-38-0)

Introduction

Importance of matching NLO calculations with parton showers

- exclusive final states
- observable independent combination of fixed order and resummation
- problem double counting: both NLO and PS are approximations to higher order corrections

-
-

-
-

Introduction

Importance of matching NLO calculations with parton showers

- exclusive final states
- observable independent combination of fixed order and resummation
- problem double counting: both NLO and PS are approximations to higher order corrections
- Two methods appeared in the literature: MC@NLO and POWHEG
	- two sides of one medal
	- differ in choices of division of resummation and fixed-order part

-
-

Introduction

Importance of matching NLO calculations with parton showers

- exclusive final states
- observable independent combination of fixed order and resummation
- problem double counting: both NLO and PS are approximations to higher order corrections
- Two methods appeared in the literature: MC@NLO and POWHEG
	- two sides of one medal
	- differ in choices of division of resummation and fixed-order part

Uncertainties of NLO+PS matching

- usual μ_R and μ_F variation as in NLO calculations
- also μ_{Ω} -variation as in analytic resummations

• NLO calculation with subtraction methods

Frixione, Kunszt, Signer Nucl.Phys.B467(1996)399-442 Catani, Seymour Nucl.Phys.B485(1997)291-419

$$
\langle O \rangle^{\text{NLO}} = \int d\Phi_B \Big[B(\Phi_B) + V(\Phi_B) + I(\Phi_B) \Big] O(\Phi_B)
$$

+
$$
\int d\Phi_R \Big[\sum_i D_i^{(A)}(\Phi_R) O(\Phi_{B_i}) - \sum_i D_i^{(S)}(\Phi_R) O(\Phi_{B_i}) \Big]
$$

+
$$
\int d\Phi_R \Big[R(\Phi_R) - \sum_i D_i^{(A)}(\Phi_R) \Big] O(\Phi_R)
$$

-
-
-

• NLO calculation with subtraction methods

Frixione, Kunszt, Signer Nucl.Phys.B467(1996)399-442 Catani, Seymour Nucl.Phys.B485(1997)291-419

$$
\langle O \rangle^{\text{NLO}} = \int d\Phi_B \Big[B(\Phi_B) + V(\Phi_B) + I(\Phi_B) \Big] O(\Phi_B)
$$

+
$$
\int d\Phi_R \Big[\sum_i D_i^{(A)}(\Phi_R) O(\Phi_{B_i}) - \sum_i D_i^{(S)}(\Phi_R) O(\Phi_{B_i}) \Big]
$$

+
$$
\int d\Phi_R \Big[R(\Phi_R) - \sum_i D_i^{(A)}(\Phi_R) \Big] O(\Phi_R) + \langle O \rangle_{\text{corr}}^{(A)}
$$

$$
\langle O \rangle_{\text{corr}}^{(A)} = \int d\Phi_R \sum_i D_i^{(A)} [O(\Phi_R) - O(\Phi_{B_i})]
$$

- introduce second set of subtraction functions $D_i^{(A)}$
- \bullet ${\rm D}_i^{({\sf A})}$ and ${\rm D}_i^{({\sf S})}$ need to have same momentum maps and IR limit

1

• NLO calculation with subtraction methods

Frixione, Kunszt, Signer Nucl.Phys.B467(1996)399-442 Catani, Seymour Nucl.Phys.B485(1997)291-419

$$
\langle O \rangle^{\text{NLO}} = \int d\Phi_B \, \bar{\mathbf{B}}^{(\mathbf{A})}(\Phi_B) \, O(\Phi_B) \left[\Delta^{(\mathbf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \right. \\
\left. + \int_{t_0}^{\mu_Q^2} d\Phi_1 \, \frac{\mathbf{D}^{(\mathbf{A})}(\Phi_B, \Phi_1)}{\mathbf{B}(\Phi_B)} \, \Delta^{(\mathbf{A})}(t, \mu_Q^2) \, O(\Phi_R) \right] \\
+ \int d\Phi_R \Big[\mathbf{R}(\Phi_R) - \sum_i \mathbf{D}_i^{(\mathbf{A})}(\Phi_R) \Big] O(\Phi_R) + \langle O \rangle_{\text{corr}}^{(\mathbf{A})}
$$

- introduce second set of subtraction functions $\mathrm{D}_i^{(\mathsf{A})}$
- \bullet ${\rm D}_i^{({\sf A})}$ and ${\rm D}_i^{({\sf S})}$ need to have same momentum maps and IR limit

• NLO calculation with subtraction methods

Frixione, Kunszt, Signer Nucl.Phys.B467(1996)399-442 Catani, Seymour Nucl.Phys.B485(1997)291-419

$$
\langle O \rangle^{\text{NLO}} = \int d\Phi_B \overline{B}^{(\text{A})}(\Phi_B) O(\Phi_B) \left[\Delta^{(\text{A})}(t_0, \mu_Q^2) O(\Phi_B) \right. \\ \left. + \int_{t_0}^{\mu_Q^2} d\Phi_1 \frac{D^{(\text{A})}(\Phi_B, \Phi_1)}{B(\Phi_B)} \Delta^{(\text{A})}(t, \mu_Q^2) O(\Phi_R) \right] \\ + \int d\Phi_R \left[R(\Phi_R) - \sum_i D_i^{(\text{A})}(\Phi_R) \right] O(\Phi_R)
$$

- introduce second set of subtraction functions $\mathrm{D}_i^{(\mathsf{A})}$
- \bullet ${\rm D}_i^{({\sf A})}$ and ${\rm D}_i^{({\sf S})}$ need to have same momentum maps and IR limit
- \bullet ${\rm D}_i^{({\sf A})}$ as resummation kernels

POWHEG

Special choices: Nason JHEP11(2004)040, Frixione et.al. JHEP11(2007)070

• exponentiation kernel $D_i^{(A)} = \rho_i \cdot R$ with $\rho_i = D_i^{(S)}/\sum_i D_i^{(S)}$

 \rightarrow each $\rho_i \cdot \text{R}$ contains only one divergence structure as defined by $\text{D}_i^\text{(S)}$

-
-
-

- -

POWHEG

Special choices: Nason JHEP11(2004)040, Frixione et.al. JHEP11(2007)070

• exponentiation kernel $D_i^{(A)} = \rho_i \cdot R$ with $\rho_i = D_i^{(S)}/\sum_i D_i^{(S)}$ \rightarrow each $\rho_i \cdot \text{R}$ contains only one divergence structure as defined by $\text{D}_i^\text{(S)}$

Consequences:

- $\bullet\,$ no $\mathbb{H}\!$ -events, resummation scale μ_Q^2 at kinematic limit $\frac{1}{2}\,s_{\mathsf{had}}$
- \bullet in CS-subtraction instabilities in ρ_i due to different cuts on ${\rm R}$ and ${\rm D}_i^{\text{(S)}}$
- exponentiation of R through matrix element corrected parton shower NLO accuracy depends crucially on presence of exact same terms in subtraction and parton shower

- -

POWHEG

Special choices: Nason JHEP11(2004)040, Frixione et.al. JHEP11(2007)070

• exponentiation kernel $D_i^{(A)} = \rho_i \cdot R$ with $\rho_i = D_i^{(S)}/\sum_i D_i^{(S)}$ \rightarrow each $\rho_i \cdot \text{R}$ contains only one divergence structure as defined by $\text{D}_i^\text{(S)}$

Consequences:

- $\bullet\,$ no $\mathbb{H}\!$ -events, resummation scale μ_Q^2 at kinematic limit $\frac{1}{2}\,s_{\mathsf{had}}$
- \bullet in CS-subtraction instabilities in ρ_i due to different cuts on ${\rm R}$ and ${\rm D}_i^{\text{(S)}}$
- exponentiation of R through matrix element corrected parton shower NLO accuracy depends crucially on presence of exact same terms in subtraction and parton shower

Modifications:

- introduce suppression function $f(p_\perp)=h^2/(p_\perp^2+h^2)$ Alioli et.al. JHEP04(2009)002 \rightarrow D_i^(A) = $\rho_i \cdot R \cdot f(p_\perp)$
	- \rightarrow continuous dampening of resummation kernel at large p_{\perp}

MC@NLO – traditional scheme

Special choices: Frixione, Webber JHEP06(2002)029

- \bullet exponentiation kernel $\mathcal{E}_i^{(\mathsf{A})} = \mathrm{B} \cdot \mathcal{K}_i \quad$ with \mathcal{K}_i parton shower kernels
-

$$
\sum\, \mathrm{B}\cdot\mathcal{K}_i\cdot f(p_\perp)\quad \textcolor{blue}{\overset{p_\perp\rightarrow 0}{\longrightarrow}}\quad \sum\, \mathrm{D}_i^{\mathrm{(S)}}
$$

MC@NLO – traditional scheme

Special choices: Frixione, Webber JHEP06(2002)029

• exponentiation kernel $D_i^{(\mathsf{A})} = \mathrm{B} \cdot \mathcal{K}_i$ with \mathcal{K}_i parton shower kernels

Consequences:

- $\bullet\,$ resummation scale $\mu_Q^2=t_{\sf max}$ parton shower starting scale
- in general, $D_i^{(A)}$ only leading colour approximation NLO accuracy depends crucially on correctness of IR-limit

$$
\sum B \cdot \mathcal{K}_i \cdot f(p_\perp) \quad \xrightarrow{\quad p_\perp \rightarrow 0 \quad \quad} \quad \sum D_i^{\text{(S)}}
$$

MC@NLO – traditional scheme

Special choices: Frixione, Webber JHEP06(2002)029

• exponentiation kernel $D_i^{(\mathsf{A})} = \mathrm{B} \cdot \mathcal{K}_i$ with \mathcal{K}_i parton shower kernels

Consequences:

- $\bullet\,$ resummation scale $\mu_Q^2=t_{\sf max}$ parton shower starting scale
- in general, $D_i^{(A)}$ only leading colour approximation NLO accuracy depends crucially on correctness of IR-limit

Modifications: Frixione, Nason, Webber JHEP08(2003)007

• introduce soft modification function $f(p_+)$ such that

$$
\sum B \cdot \mathcal{K}_i \cdot f(p_\perp) \xrightarrow{p_\perp \to 0} \sum D_i^{(\mathsf{S})}
$$

•
$$
f(p_{\perp})
$$
 process dependent in general

$\textsf{MCCNLO} - \textsf{D}_i^{(\textsf{A})} = \textsf{D}_i^{(\textsf{S})}$ $i^{(3)}$ scheme

Special choices: SH, FK, MS, FS arXiv:1111.1220

 \bullet exponentiation kernel $\binom{(\mathsf{A})}{i} = \mathrm{D}_i^{(\mathsf{S})}$

-
-

-
-
-

$\textsf{MCCNLO} - \textsf{D}_i^{(\textsf{A})} = \textsf{D}_i^{(\textsf{S})}$ $i^{(3)}$ scheme

• exponentiation kernel $D_i^{(A)} = D_i^{(S)}$

Consequences:

- simplification of $\bar{B}^{(A)}$ -integral
- $\bullet\,$ resummation scale $\mu_Q^2=t_{\sf max}$ set by phase space limitation of subtraction terms

 \rightarrow subtraction constrained in parton shower t needed for physical resummation

 \rightarrow instructive example: use α_{cut} to explore effects Nagy PRD68(2003)094002

- integrate difference of $\alpha_{\rm cut}$ and $t_{\rm max}$ numerically
- trivially NLO correct independent of the process without arbitrary parameter choices

Special choices: SH, FK, MS, FS arXiv:1111.1220

- $\bullet\,$ resummation kernels ${\rm D}_i^{({\sf A})}$ need to have correct full-colour soft-collinear limit in order for modified subtraction to work \rightarrow conventional large- N_C shower kernels not suitable
- independent of precise defintion of ${\rm D}_i^{\left({\mathsf{A}} \right)}$ (POWHEG or MC@NLO)
- • implemented algorithm to incorporate all subleading-colour dipoles in Catani-Seymour dipole shower independent of sign \rightarrow similar to Plätzer, Sjödahl Eur. Phys. J. Plus 127(2012)26, arXiv: 1201.0260

Implemented in SHERPA – full-colour first parton shower emission **Tricky point:** $D_i^{(A)} < 0$ e.g. for subleading colour dipoles Use modified Sudakov veto algorithm SH, FK, MS, FS arXiv:1111.1220

• Assume $f(t)$ as function to be generated, and overestimate $g(t)$ Standard probability for one acceptance with n rejections

$$
\frac{f(t)}{g(t)} g(t) \exp\left\{-\int_t^{t_1} \mathrm{d}\bar{t} \, g(\bar{t})\right\} \prod_{i=1}^n\left[\int_{t_{i-1}}^{t_{n+1}} \mathrm{d}t_i \left(1-\frac{f(t_i)}{g(t_i)}\right) g(t_i) \exp\left\{-\int_{t_i}^{t_{i+1}} \mathrm{d}\bar{t} \, g(\bar{t})\right\}\right]
$$

$$
\frac{f(t)}{g(t)}h(t)\exp\left\{-\int_t^{t_1} d\bar{t}h(\bar{t})\right\} \prod_{i=1}^n \left[\int_{t_{i-1}}^{t_{n+1}} dt_i \left(1 - \frac{f(t_i)}{g(t_i)}\right) h(t_i) \exp\left\{-\int_{t_i}^{t_{i+1}} d\bar{t}h(\bar{t})\right\}\right]
$$

$$
w(t, t_1, \dots, t_n) = \frac{g(t)}{h(t)} \prod_{i=1}^n \frac{g(t_i)}{h(t_i)} \frac{h(t_i) - f(t_i)}{g(t_i) - f(t_i)}
$$

Implemented in SHERPA – full-colour first parton shower emission **Tricky point:** $D_i^{(A)} < 0$ e.g. for subleading colour dipoles Use modified Sudakov veto algorithm SH, FK, MS, FS arXiv:1111.1220

• Assume $f(t)$ as function to be generated, and overestimate $g(t)$ Standard probability for one acceptance with n rejections

$$
\frac{f(t)}{g(t)} g(t) \exp \left\{-\int_t^{t_1} \mathrm{d}\bar{t} g(\bar{t})\right\} \prod_{i=1}^n \left[\int_{t_{i-1}}^{t_{n+1}} \mathrm{d}t_i \left(1 - \frac{f(t_i)}{g(t_i)}\right) g(t_i) \exp \left\{-\int_{t_i}^{t_{i+1}} \mathrm{d}\bar{t} g(\bar{t})\right\}\right]
$$

• Can split weight into MC and **analytic** part using auxiliary function $h(t)$

$$
\frac{f(t)}{g(t)}h(t)\exp\left\{-\int_t^{t_1} d\bar{t}h(\bar{t})\right\} \prod_{i=1}^n \left[\int_{t_{i-1}}^{t_{n+1}} dt_i \left(1 - \frac{f(t_i)}{g(t_i)}\right) h(t_i) \exp\left\{-\int_{t_i}^{t_{i+1}} d\bar{t}h(\bar{t})\right\}\right]
$$

$$
w(t, t_1, \dots, t_n) = \frac{g(t)}{h(t)} \prod_{i=1}^n \frac{g(t_i)}{h(t_i)} \frac{h(t_i) - f(t_i)}{g(t_i) - f(t_i)}
$$

Implemented in SHERPA – full-colour first parton shower emission **Tricky point:** $D_i^{(A)} < 0$ e.g. for subleading colour dipoles Use modified Sudakov veto algorithm SH, FK, MS, FS arXiv:1111.1220

• Can split weight into MC and **analytic** part using auxiliary function $h(t)$

$$
\frac{f(t)}{g(t)} h(t) \exp \left\{ - \int_t^{t_1} d\bar{t} h(\bar{t}) \right\} \prod_{i=1}^n \left[\int_{t_{i-1}}^{t_{n+1}} dt_i \left(1 - \frac{f(t_i)}{g(t_i)} \right) h(t_i) \exp \left\{ - \int_{t_i}^{t_{i+1}} d\bar{t} h(\bar{t}) \right\} \right]
$$

$$
w(t, t_1, \dots, t_n) = \frac{g(t)}{h(t)} \prod_{i=1}^n \frac{g(t_i)}{h(t_i)} \frac{h(t_i) - f(t_i)}{g(t_i) - f(t_i)}
$$

Identify $f(t)$, $q(t)$, $h(t)$:

- $f(t)$ determined by MC@NLO \Rightarrow $D_i^{(A)}$
- $h(t)$ determined by parton shower \Rightarrow $D_i^{(PS)}$
- $g(t)$ can be chosen freely \Rightarrow const. \cdot f constraints: $sign(f) = sign(g), |f| \le |g|$

Automation in SHERPA framework

- easy to automate and process independent − only virtual correction V needs to be supplied
- leading order pieces and phase space generation taken care of by well-tested automated tree-level matrix element generators AMEGIC++ and/or COMIX Krauss, Kuhn, Soff JHEP02(2002)044, Höche, Gleisberg JHEP12(2008)039
- based on Catani-Seymour subtraction Catani, Seymour Nucl.Phys.B485(1997)291-419 Nagy PRD68(2003)094002, Gleisberg, Krauss EPJC53(2008)501-523
- using dipole-like parton shower Schumann, Krauss JHEP03(2008)038 \Rightarrow phase space restriction of dipoles $=$ starting scale for parton shower
- parton showers are easy to correct with matrix elements
	- $-\mathrm{D}^{(\mathsf{A})}_i/\mathrm{B}$ always non-zero and close to pure parton shower result
	- $-$ larger analytic weights in soft-gluon regime limited by t_0

Results – $pp \rightarrow h + X$ in gl. fusion

- NLO K-factor distributed over phase space filled by S-events
- POWHEG resums up to scale $\frac{1}{2} \sqrt{s_{\mathsf{had}}}$

• MC@NLO w. restricted res. phase space follows fixed order result at large p_{\perp}

Results – $pp \rightarrow h + X$ in gl. fusion

- NLO K-factor distributed over phase space filled by S-events
- POWHEG resums up to scale $\frac{1}{2} \sqrt{s_{\mathsf{had}}}$
	- \rightarrow generates \sim 10% Sudakov suppression at m_h .
		- as does MC@NLO when resumming up to $\frac{1}{2}\sqrt{s_{\mathsf{had}}}$
- MC@NLO w. restricted res. phase space follows fixed order result at large p_{\perp}

Results – $pp \rightarrow h + jet + X$ production in gl. fusion

- increased parton multiplicity worsens problems
- large dependence on exponentiated phase space
- \bullet unphysical results for $\mu_Q^2 \rightarrow {1\over 4}\,s_{\sf had}$

Results – $pp \rightarrow h + jet + X$ production in gl. fusion

- increased parton multiplicity worsens problems
- large dependence on exponentiated phase space
- \bullet unphysical results for $\mu_Q^2 \rightarrow {1\over 4}\,s_{\sf had}$

Results – $pp \rightarrow W + n$ jet + X production

 $W + 1, 2, 3$ jets at LHC (ATLAS data) SH, FK, MS, FS arXiv:1201.5882

- complexity not a problem
- speed limited by the virtual amplitude in $W + 3$ jet
- scales:

$$
\mu_R = \mu_F = \frac{1}{2} \hat{H}'_T
$$

$$
\mu_R^{\exp} = \frac{1}{(1/p_\perp^2 + 1/\mu_R^2)^{\frac{1}{2}}}
$$

• fixed order behaviour at high p_{\perp} \rightarrow smoother transition to H-events

Results – $pp \rightarrow jet jet + X$ (preliminary)

• scales:

$$
\mu_R = \mu_F = \frac{1}{4} H_T = \frac{1}{2} p_{\perp} \qquad \mu_R^{\exp} = \min\{p_{\perp}, \mu_R\} \n\mu_Q^2 = \frac{1}{2} p_{\perp}
$$

Marek Sch¨onherr IPPP Durham

[NLO+PS matching methods and systematic uncertainties](#page-0-0) 15

Associated uncertainties

Assessment of uncertainties

- limit discussion to $gg \to h$ because effects are largest and cleanest here (large NLO k-factor, very simple colour/dipole structure) \rightarrow large rate difference for S and H events
- setup: k_{\perp} -ordered parton shower based on Catani-Seymour dipoles \rightarrow highlights what happens at resummation scale $\mu_Q = \mathbf{k}_{\perp}^{\mathsf{max}}$
- renormalisation scale $\mu_R = m_h$, $\mu_R^{\sf exp} = \min\{p_\perp,\mu_R\} \xrightarrow{p_\perp \to \infty} \mu_R$ $\big(\mu_R^{\sf exp}=\sqrt{\frac{1}{1/p_\perp^2+1/\mu_R^2}}\,$ gives similar results)
-
- -
	-
	- -
-

Associated uncertainties

Assessment of uncertainties

- limit discussion to $gg \to h$ because effects are largest and cleanest here (large NLO k-factor, very simple colour/dipole structure) \rightarrow large rate difference for S and H events
- setup: k_{\perp} -ordered parton shower based on Catani-Seymour dipoles \rightarrow highlights what happens at resummation scale $\mu_Q = \mathbf{k}_{\perp}^{\mathsf{max}}$
- renormalisation scale $\mu_R = m_h$, $\mu_R^{\sf exp} = \min\{p_\perp,\mu_R\} \xrightarrow{p_\perp \to \infty} \mu_R$ $\big(\mu_R^{\sf exp}=\sqrt{\frac{1}{1/p_\perp^2+1/\mu_R^2}}\,$ gives similar results)
- $\bullet\,$ vary resummation scale $\mu_Q = \mathbf{k}_{\perp}^{\mathsf{max}}$, i.e. starting conditions of MC@NLO-PS
- -
	-
	- -
-

Associated uncertainties

Assessment of uncertainties

- limit discussion to $qq \rightarrow h$ because effects are largest and cleanest here (large NLO k-factor, very simple colour/dipole structure) \rightarrow large rate difference for S and H events
- setup: k_{\perp} -ordered parton shower based on Catani-Seymour dipoles \rightarrow highlights what happens at resummation scale $\mu_Q = \mathbf{k}_{\perp}^{\mathsf{max}}$
- renormalisation scale $\mu_R = m_h$, $\mu_R^{\sf exp} = \min\{p_\perp,\mu_R\} \xrightarrow{p_\perp \to \infty} \mu_R$ $\big(\mu_R^{\sf exp}=\sqrt{\frac{1}{1/p_\perp^2+1/\mu_R^2}}\,$ gives similar results)
- $\bullet\,$ vary resummation scale $\mu_Q = \mathbf{k}_{\perp}^{\mathsf{max}}$, i.e. starting conditions of MC@NLO-PS
- starting conditions of POWHEG-shower fixed at ${\bf k}_{\perp}^{\rm max}=\frac{1}{2}\sqrt{s_{\sf had}}$
	- effect of suppression function not investigated
	- introduces arbitrary free parameter (not fixed to be of order of m_h)
	- uncertainties as large as with α variation
		- \rightarrow investigated in Alioli et.al. JHEP04(2009)002
- \Rightarrow uncertainties in (N)LL-LO matching in MC@NLO and POWHEG

Choice of splitting kernel – $D^{(A)}/B$

traditional MC@NLO and POWHEG choices of splitting kernels

- ightharpoonup large uncertainties when varying ${\bf k}_\perp^{\rm max}$
- ► driven by diff. in normalisation of S- and $\mathbb{H}\text{-events}$ and size of $\ln^2(\mathbf{k}_\perp^2/\mu_Q^2)$
- shape difference driven by unitarity constraint

Choice of splitting kernel – $D^{(A)}/B$

traditional MC@NLO and POWHEG choices of splitting kernels

- uncertainty on jet rates with $p_\perp \sim 100$ GeV: 2.5
- no dip in $\Delta y \rightarrow$ originates in HERWIG's radiation pattern

Choice of splitting kernel – $D^{(A)}/\bar{B}^{(A)}$

here: change splitting kernels $K \longrightarrow (1 + \alpha_s \cdot \text{const.}) K$

- \blacktriangleright uncertainties much lower, smooth transition at μ_Q^2
- much closer to NIO fixed order result for "hard" emissions
- \triangleright price of spuriously large LL prefactor \rightarrow Sudakov peak differs

Choice of splitting kernel – $D^{(A)}/\bar{B}^{(A)}$

here: change splitting kernels $K \rightarrow (1 + \alpha_s \cdot \text{const.}) K$

 \blacktriangleright uncertainties much lower, smooth transition at μ_Q^2

- much closer to NIO fixed order result for "hard" emissions
- \triangleright price of spuriously large LL prefactor

Choice of higher order correction – $\bar{\text{B}}^{(\text{A})}/\text{B} \cdot \mathbb{H}$

here: modify \mathbb{H} -term with arbitrary higher order corrections $\mathbb{H} \to \frac{\bar{\mathrm{B}}^{(\mathrm{A})}}{\mathrm{B}}$ \mathbb{H}

- \triangleright PS resummation left void of higher order terms
- equivalent to MENLOPS prescription in Höche et.al. JHEP04(2011)024
- ighthroportion in $\mathbb{H}\text{-events}$

Choice of higher order correction – $\bar{\text{B}}^{(\text{A})}/\text{B} \cdot \mathbb{H}$

here: modify \mathbb{H} -term with arbitrary higher order corrections $\mathbb{H} \to \frac{\bar{\mathrm{B}}^{(\mathrm{A})}}{\mathrm{B}}$ \mathbb{H}

- PS resummation left void of higher order terms
- equivalent to MENLOPS prescription in Höche et.al. JHEP04(2011)024
- ighthroportion in $\mathbb{H}\text{-events}$

Conclusions

- NLO+PS is $LO+(N)$ LL matching
- uncertainties studied occur in every process and are inherent to methods \rightarrow $q\bar{q}$ \rightarrow h just presents a clean environment
- exploit freedom left at the respective level of accuracy \rightarrow each with merrits and drawbacks
- • choices constrained by adding higher order calculations
	- (N)NLL resummation
	- NNLO corrections
	- NLO⊗NLO merging with $Q_{\mathsf{cut}} < \mu_Q^2$

Conclusions

- MC@NLO in $D_i^{(A)} = D_i^{(S)}$ scheme with resummation phase space restriction in α_{cut} included in release SHERPA-1.4.0
- MC@NLO in $D_i^{(A)} = D_i^{(S)}$ scheme with resummation phase space restriction in ${\bf k}_\perp^{\rm max}$ in upcoming release SHERPA-1.4.1 \rightarrow first NLO+PS implementation to study dependence on resummation

scale

http://www.sherpa-mc.de

- new Minimum Bias model (Khoze, Martin, Ryskin) also included
- tune will be available with upcoming SHERPA-1.4.1

Thank you for your attention!

Results – $pp \rightarrow h + X$ in gl. fusion

Real emission phase space

$$
\tilde{v}_i = \frac{p_a \cdot k}{p_a \cdot p_b} \quad x_{i,ab} = 1 - \frac{(p_a + p_b) \cdot k}{p_a \cdot p_b}
$$

- restriction in α permits very hard $(x_{i,ab} \rightarrow 0)$, not too collinear radiation at larger \tilde{v}_i
- restriction in ${\mathbf k}_\perp^2=Q^2\,\tilde{v}_i\,\frac{1-x_{i,ab}}{x_{i,ab}}$ $x_{i,ab}$ permits only very soft $(x_{i,ab} \rightarrow 1)$ radiation at larger \tilde{v}_i

Results – $pp \rightarrow h + X$ in gl. fusion

however, α_{cut} no sensible parameter w.r.t. exponentiation region

- \rightarrow restricts emissions to small opening angle wrt. beam
- \rightarrow bias towards hard collinear emissions

Different levels of MC@NLO simulation

1em MC@NLO emission only

- **SL** MC@NLO and parton shower
- HL MC@NLO, parton shower, hadronisation and multiple interactions